(Ⅱ)若..求b. 查看更多

 

題目列表(包括答案和解析)

(Ⅰ)若a是從1,2,3,4四個(gè)數(shù)中任取的一個(gè)數(shù),b是從1,2,3三個(gè)數(shù)中任取的一個(gè)數(shù),求點(diǎn)P(a,b)在橢圓
x2
16
+
y2
9
=1
內(nèi)的概率.
(Ⅱ)若a是從區(qū)間(0,3]任取的一個(gè)實(shí)數(shù),b是從區(qū)間(0,3]任取的一個(gè)實(shí)數(shù),求直線y=x+1與橢圓
x2
a2
+
y2
b2
=1
有公共點(diǎn)的概率.

查看答案和解析>>

(Ⅰ)已知圓O:x2+y2=4和點(diǎn)M(1,a),若實(shí)數(shù)a>0且過點(diǎn)M有且只有一 條直線與圓O相切,求實(shí)數(shù)a的值,并求出切線方程;
(Ⅱ)過點(diǎn)(
2
,0)引直線l與曲線y=
1-x2
相交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),當(dāng)△ABO的面積取得最大值時(shí),求直線l的方程.

查看答案和解析>>

(Ⅰ)求極坐標(biāo)方程ρsin2θ-2•cosθ=0表示的曲線的焦點(diǎn)坐標(biāo);
(Ⅱ)設(shè)直線l:
x=2+3t
y=3+4t
(t為參數(shù))與題(Ⅰ)中的曲線交于A、B兩點(diǎn),若P(2,3),求|PA|•|PB|的值.

查看答案和解析>>

(Ⅰ)集合A={x|x2-ax+a2-19=0},B={x|x2-5x+6=0}.若A∪B=A∩B,求a的值.
(Ⅱ)若集合M={x|x≤5或x≥7},N={x|m+1≤x≤2m-1},且M∪N=R,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

B.選修4-2:矩陣與變換
設(shè)a>0,b>0,若矩陣A=
.
a0
0b
.
把圓C:x2+y2=1變換為橢圓E:
x2
4
+
y2
3
=1.
(1)求a,b的值;
(2)求矩陣A的逆矩陣A-1
C.選修4-4:坐標(biāo)系與參數(shù)方程在極坐標(biāo)系中,已知圓C:ρ=4cosθ被直線l:ρsin(θ-
π
6
)=a截得的弦長(zhǎng)為2
3
,求實(shí)數(shù)a的值.

查看答案和解析>>

一、選擇題

       1.C            2.B            3.B            4.D                   5.B              6.C    

7.D            8.C       9.C       10.C

二、填空題

       11.           12.                  13.                   14.2            15.30°

三、解答題

16.解:(Ⅰ)由,根據(jù)正弦定理得,所以,

為銳角三角形得.………………………………………………7分

(Ⅱ)根據(jù)余弦定理,得

所以,.………………………………………………14分

17.解:(Ⅰ)記表示事件:“位顧客中至少位采用一次性付款”,則表示事件:“位顧客中無(wú)人采用一次性付款”.

.………………………………………………7分

(Ⅱ)記表示事件:“位顧客每人購(gòu)買件該商品,商場(chǎng)獲得利潤(rùn)不超過元”.

表示事件:“購(gòu)買該商品的位顧客中無(wú)人采用分期付款”.

表示事件:“購(gòu)買該商品的位顧客中恰有位采用分期付款”.

,

.……………………………………14分

18.解法一:(1)作,垂足為,連結(jié),由側(cè)面底面,得底面

因?yàn)?sub>,所以,又,故為等腰直角三角形,,

由三垂線定理,得.………………………7分

(Ⅱ)由(Ⅰ)知

依題設(shè),

,由,,

,作,垂足為

平面,連結(jié)為直線與平面所成的角.

所以,直線與平面所成角的正弦值為.………………………………………………14分

解法二:(Ⅰ)作,垂足為,連結(jié),由側(cè)面底面,得平面

因?yàn)?sub>,所以

,為等腰直角三角形,

如圖,以為坐標(biāo)原點(diǎn),軸正向,建立直角坐標(biāo)系,

因?yàn)?sub>,,

,所以,

,

,,,所以.…………………7分

(Ⅱ).

的夾角記為,與平面所成的角記為,因?yàn)?sub>為平面的法向量,所以互余.

,

所以,直線與平面所成角的正弦值為.………………………14分

19.解:(Ⅰ),

因?yàn)楹瘮?shù)取得極值,則有,

解得,.………………………7分

(Ⅱ)由(Ⅰ)可知,,

當(dāng)時(shí),;

當(dāng)時(shí),

當(dāng)時(shí),

所以,當(dāng)時(shí),取得極大值,又

則當(dāng)時(shí),的最大值為

因?yàn)閷?duì)于任意的,有恒成立,

所以 

解得 ,

因此的取值范圍為.………………………14分

20.解:(Ⅰ)設(shè)的公差為的公比為,則依題意有

解得,

所以,

.………………………6分

(Ⅱ)

,①

,②

②-①得,

.………………………12分

21.證明:(Ⅰ)橢圓的半焦距,

知點(diǎn)在以線段為直徑的圓上,

所以,.………………………6分

(Ⅱ)(?)當(dāng)的斜率存在且時(shí),的方程為,代入橢圓方程,并化簡(jiǎn)得

設(shè),則

,

;

因?yàn)?sub>相交于點(diǎn),且的斜率為

所以,

四邊形的面積

當(dāng)時(shí),上式取等號(hào).………………………10分

(?)當(dāng)的斜率或斜率不存在時(shí),四邊形的面積.……………………11分

綜上,四邊形的面積的最小值為.………………………12分

 

 

 


同步練習(xí)冊(cè)答案