D.函數(shù)圖象的對稱軸方程均可表示為 查看更多

 

題目列表(包括答案和解析)

當(dāng)函數(shù)的自變量取值區(qū)間與值域區(qū)間相同時,我們稱這樣的區(qū)間為該函數(shù)的保值區(qū)間.函數(shù)的保值區(qū)間有(-∞,m]、[m,n]、[n,+∞)三種形式.以下四個圖中:虛線為二次函數(shù)圖象的對稱軸,直線l的方程為y=x,從圖象可知,下列四個二次函數(shù)中有2個保值區(qū)間的函數(shù)是( 。

查看答案和解析>>

函數(shù)圖象的對稱軸為,則的值為(  )

A.             B.           C.           D.

 

查看答案和解析>>

設(shè)函數(shù)的導(dǎo)函數(shù)的最大值為3,則函數(shù)圖象的對稱軸方程為(    )

A.                          B.

C.                          D.

 

查看答案和解析>>

函數(shù)圖象的對稱軸方程可以為

A.           B.              C.            D.

 

查看答案和解析>>

函數(shù)圖象的對稱軸方程可能是(     )

A.         B.     C.       D.

查看答案和解析>>

 

第I卷(選擇題 共60分)

一、選擇題(每小題5分,共60分)

1―6ADDCAB  7―12CBBCBC

第Ⅱ卷(非選擇題 共90分)

二、填空題(每小題4分,共16分)

13.2  14.   15.  16.①②

三、解答題(本大題共6小題,共74分)

17.解:(I)

      

      

          4分

       又    2分

   (II)    

           2分

             1分

      

      

              3分

18.(I)證明:由題意可知CD、CB、CE兩兩垂直。

       可建立如圖所示的空間直角坐標(biāo)系

       則       2分

       由  1分

      

      <style id="w6qp5"></style>

             又平面BDF,

             平面BDF。       2分

         (Ⅱ)解:設(shè)異面直線CM與FD所成角的大小為

            

            

            

             即異面直線CM與FD所成角的大小為   3分

         (III)解:平面ADF,

             平面ADF的法向量為      1分

             設(shè)平面BDF的法向量為

             由

                  1分

            

                1分

             由圖可知二面角A―DF―B的大小為   1分

      19.解:(I)設(shè)該小組中有n個女生,根據(jù)題意,得

            

             解得n=6,n=4(舍去)

             該小組中有6個女生。        6分

         (Ⅱ)由題意,甲、乙、丙3人中通過測試的人數(shù)不少于2人,

             即通過測試的人數(shù)為3人或2人。

             記甲、乙、丙通過測試分別為事件A、B、C,則

            

                  6分

      20.解:(I)的等差中項(xiàng),

                   1分

            

                   2分

                      1分

         (Ⅱ)

                     2分

            

                3分

             ,   

             當(dāng)且僅當(dāng)時等號成立。

            

      21.解:(I)到漸近線=0的距離為,兩條準(zhǔn)線之間的距離為1,

                     3分

                  1分

         (II)由題意,設(shè)

             由     1分

                  3分

         (III)由雙曲線和ABCD的對稱性,可知A與C、B與D關(guān)于原點(diǎn)對稱。

             而   

             1分

             點(diǎn)O到直線的距離   1分

                    1分

                   1分

      22.解:(I)當(dāng)t=1時,   1分

             當(dāng)變化時,的變化情況如下表:

            

      (-1,1)

      1

      (1,2)

      0

      +

      極小值

             由上表,可知當(dāng)    2分

                  1分

         (Ⅱ)

            

             顯然的根。    1分

             為使處取得極值,必須成立。

             即有    2分

            

             的個數(shù)是2。

         (III)當(dāng)時,若恒成立,

             即   1分

            

             ①當(dāng)時,

            

             上單調(diào)遞增。

            

            

             解得    1分

             ②當(dāng)時,令

             得(負(fù)值舍去)。

         (i)若時,

             上單調(diào)遞減。

            

            

                 1分

         (ii)若

             時,

             當(dāng)

             上單調(diào)遞增,

            

             要使,則

            

                  2分

         (注:可證上恒為負(fù)數(shù)。)

             綜上所述,t的取值范圍是。        1分

       


      同步練習(xí)冊答案