A. 查看更多

 

題目列表(包括答案和解析)

精英家教網(wǎng)A.(選修4-4坐標系與參數(shù)方程)已知點A是曲線ρ=2sinθ上任意一點,則點A到直線ρsin(θ+
π3
)=4
的距離的最小值是
 

B.(選修4-5不等式選講)不等式|x-log2x|<x+|log2x|的解集是
 

C.(選修4-1幾何證明選講)如圖所示,AC和AB分別是圓O的切線,且OC=3,AB=4,延長AO到D點,則△ABD的面積是
 

查看答案和解析>>

精英家教網(wǎng)A.(不等式選做題)若關(guān)于x的不等式|x+3|-|x+2|≥log2a有解,則實數(shù)a的取值范圍是:
 

B.(幾何證明選做題)如圖,四邊形ABCD是圓O的內(nèi)接四邊形,延長AB和DC相交于點P.若
PB
PA
=
1
2
,
PC
PD
=
1
3
,則
BC
AD
的值為
 

C.(坐標系與參數(shù)方程選做題)設(shè)曲線C的參數(shù)方程為
x=3+2
2
cosθ
y=-1+2
2
sinθ
(θ為參數(shù)),以原點為極點,x軸正半軸為極軸建立極坐標系,直線l的極坐標方程為ρ=
2
cosθ-sinθ
,則曲線C上到直線l距離為
2
的點的個數(shù)為:
 

查看答案和解析>>

精英家教網(wǎng)A.(不等式選做題)
函數(shù)f(x)=x2-x-a2+a+1對于任一實數(shù)x,均有f(x)≥0.則實數(shù)a滿足的條件是
 

B.(幾何證明選做題)
如圖,圓O是△ABC的外接圓,過點C的切線交AB的延長線于點D,CD=2
3
,AB=BC=4,則AC的長為
 

C.(坐標系與參數(shù)方程選做題)
在極坐標系中,曲線ρ=4cos(θ-
π
3
)
上任意兩點間的距離的最大值為
 

查看答案和解析>>

精英家教網(wǎng)A.不等式
x-2
x2+3x+2
>0
的解集是
 

B.如圖,AB是⊙O的直徑,P是AB延長線上的一點,過P作⊙O的切線,切點為CPC=2
3
,若∠CAP=30°,則⊙O的直徑AB=
 

C.(極坐標系與參數(shù)方程選做題)若圓C:
x=1+
2
cosθ
y=2+
2
sinθ
(θ為參數(shù))
與直線x-y+m=0相切,則m=
 

查看答案和解析>>

精英家教網(wǎng)A.(不等式選做題)不等式|3x-6|-|x-4|>2x的解集為
 


B.(幾何證明選做題)如圖,直線PC與圓O相切于點C,割線PAB經(jīng)過圓心O,
弦CD⊥AB于點E,PC=4,PB=8,則CE=
 

C.(坐標系與參數(shù)方程選做題)在極坐標系中,圓ρ=4cosθ的圓心到直線ρsin(θ+
π
4
)=2
2
的距離為
 

查看答案和解析>>

 

第I卷(選擇題 共60分)

一、選擇題(每小題5分,共60分)

1―6ADDCAB  7―12CBBCBC

第Ⅱ卷(非選擇題 共90分)

二、填空題(每小題4分,共16分)

13.2  14.   15.  16.①②

三、解答題(本大題共6小題,共74分)

17.解:(I)

      

      

          4分

       又    2分

   (II)    

           2分

             1分

      

      

              3分

18.(I)證明:由題意可知CD、CB、CE兩兩垂直。

       可建立如圖所示的空間直角坐標系

       則       2分

       由  1分

      

    • <center id="gvqrd"></center>

                 又平面BDF,

                 平面BDF。       2分

             (Ⅱ)解:設(shè)異面直線CM與FD所成角的大小為

                

                

                 。

                 即異面直線CM與FD所成角的大小為   3分

             (III)解:平面ADF,

                 平面ADF的法向量為      1分

                 設(shè)平面BDF的法向量為

                 由

                      1分

                

                    1分

                 由圖可知二面角A―DF―B的大小為   1分

          19.解:(I)設(shè)該小組中有n個女生,根據(jù)題意,得

                

                 解得n=6,n=4(舍去)

                 該小組中有6個女生。        6分

             (Ⅱ)由題意,甲、乙、丙3人中通過測試的人數(shù)不少于2人,

                 即通過測試的人數(shù)為3人或2人。

                 記甲、乙、丙通過測試分別為事件A、B、C,則

                

                      6分

          20.解:(I)的等差中項,

                       1分

                 。

                       2分

                          1分

             (Ⅱ)

                         2分

                

                    3分

                 ,   

                 當且僅當時等號成立。

                

          21.解:(I)到漸近線=0的距離為,兩條準線之間的距離為1,

                         3分

                      1分

             (II)由題意,設(shè)

                 由     1分

                      3分

             (III)由雙曲線和ABCD的對稱性,可知A與C、B與D關(guān)于原點對稱。

                 而   

                 1分

                 點O到直線的距離   1分

                        1分

                       1分

          22.解:(I)當t=1時,   1分

                 當變化時,的變化情況如下表:

                

          (-1,1)

          1

          (1,2)

          0

          +

          極小值

                 由上表,可知當    2分

                      1分

             (Ⅱ)

                

                 顯然的根。    1分

                 為使處取得極值,必須成立。

                 即有    2分

                

                 的個數(shù)是2。

             (III)當時,若恒成立,

                 即   1分

                

                 ①當時,

                 ,

                 上單調(diào)遞增。

                

                

                 解得    1分

                 ②當時,令

                 得(負值舍去)。

             (i)若時,

                 上單調(diào)遞減。

                

                

                     1分

             (ii)若

                 時,

                 當

                 上單調(diào)遞增,

                

                 要使,則

                

                      2分

             (注:可證上恒為負數(shù)。)

                 綜上所述,t的取值范圍是。        1分

           


          同步練習冊答案