19. 查看更多

 

題目列表(包括答案和解析)

(本小題滿分12分)二次函數(shù)的圖象經(jīng)過三點.

(1)求函數(shù)的解析式(2)求函數(shù)在區(qū)間上的最大值和最小值

查看答案和解析>>

(本小題滿分12分)已知等比數(shù)列{an}中, 

   (Ⅰ)求數(shù)列{an}的通項公式an;

   (Ⅱ)設數(shù)列{an}的前n項和為Sn,證明:;

   (Ⅲ)設,證明:對任意的正整數(shù)n、m,均有

查看答案和解析>>

(本小題滿分12分)已知函數(shù),其中a為常數(shù).

   (Ⅰ)若當恒成立,求a的取值范圍;

   (Ⅱ)求的單調(diào)區(qū)間.

查看答案和解析>>

(本小題滿分12分)

甲、乙兩籃球運動員進行定點投籃,每人各投4個球,甲投籃命中的概率為,乙投籃命中的概率為

   (Ⅰ)求甲至多命中2個且乙至少命中2個的概率;

   (Ⅱ)若規(guī)定每投籃一次命中得3分,未命中得-1分,求乙所得分數(shù)η的概率分布和數(shù)學期望.

查看答案和解析>>

(本小題滿分12分)已知是橢圓的兩個焦點,O為坐標原點,點在橢圓上,且,圓O是以為直徑的圓,直線與圓O相切,并且與橢圓交于不同的兩點A、B.

   (1)求橢圓的標準方程;w.w.w.k.s.5.u.c.o.m        

   (2)當時,求弦長|AB|的取值范圍.

查看答案和解析>>

 

第I卷(選擇題 共60分)

一、選擇題(每小題5分,共60分)

1―6ADDCAB  7―12CBBCBC

第Ⅱ卷(非選擇題 共90分)

二、填空題(每小題4分,共16分)

13.2  14.   15.  16.①②

三、解答題(本大題共6小題,共74分)

17.解:(I)

      

      

          4分

       又    2分

   (II)    

           2分

             1分

      

      

              3分

18.(I)證明:由題意可知CD、CB、CE兩兩垂直。

       可建立如圖所示的空間直角坐標系

       則       2分

       由  1分

      

<tfoot id="aucxu"></tfoot>

       又平面BDF,

       平面BDF。       2分

   (Ⅱ)解:設異面直線CM與FD所成角的大小為

      

      

       。

       即異面直線CM與FD所成角的大小為   3分

   (III)解:平面ADF,

       平面ADF的法向量為      1分

       設平面BDF的法向量為

       由

            1分

      

          1分

       由圖可知二面角A―DF―B的大小為   1分

19.解:(I)設該小組中有n個女生,根據(jù)題意,得

      

       解得n=6,n=4(舍去)

       該小組中有6個女生。        6分

   (Ⅱ)由題意,甲、乙、丙3人中通過測試的人數(shù)不少于2人,

       即通過測試的人數(shù)為3人或2人。

       記甲、乙、丙通過測試分別為事件A、B、C,則

      

            6分

20.解:(I)的等差中項,

             1分

       。

             2分

                1分

   (Ⅱ)

               2分

      

          3分

       ,   

       當且僅當時等號成立。

      

21.解:(I)到漸近線=0的距離為,兩條準線之間的距離為1,

               3分

            1分

   (II)由題意,設

       由     1分

            3分

   (III)由雙曲線和ABCD的對稱性,可知A與C、B與D關于原點對稱。

       而   

       1分

       點O到直線的距離   1分

              1分

             1分

22.解:(I)當t=1時,   1分

       當變化時,的變化情況如下表:

      

(-1,1)

1

(1,2)

0

+

極小值

       由上表,可知當    2分

            1分

   (Ⅱ)

      

       顯然的根。    1分

       為使處取得極值,必須成立。

       即有    2分

      

       的個數(shù)是2。

   (III)當時,若恒成立,

       即   1分

      

       ①當時,

       ,

       上單調(diào)遞增。

      

      

       解得    1分

       ②當時,令

       得(負值舍去)。

   (i)若時,

       上單調(diào)遞減。

      

      

           1分

   (ii)若

       時,

       當

       上單調(diào)遞增,

      

       要使,則

      

            2分

   (注:可證上恒為負數(shù)。)

       綜上所述,t的取值范圍是。        1分

 


同步練習冊答案