(III)當(dāng)恒成立.求的取值范圍. 查看更多

 

題目列表(包括答案和解析)

設(shè)函數(shù)

   (I)設(shè);

   (II)求的單調(diào)區(qū)間;

   (III)當(dāng)恒成立,求實數(shù)t的取值范圍。

 

查看答案和解析>>

設(shè)函數(shù)
(I)設(shè);
(II)求的單調(diào)區(qū)間;
(III)當(dāng)恒成立,求實數(shù)t的取值范圍。

查看答案和解析>>

 

設(shè)函數(shù)f(x)=x2-mlnx,h(x)=x2-x+a.

(I)   當(dāng)a=0時,f(x)≥h(x)在(1,+∞)上恒成立,求實數(shù)m的取值范圍;

(II)  當(dāng)m=2時,若函數(shù)k(x)=f(x)-h(x)在[1,3]上恰有兩個不同零點,求實數(shù) a的取值范圍;

(III) 是否存在實數(shù)m,使函數(shù)f(x)和函數(shù)h(x)在公共定義域上具有相同的單調(diào)性?若存在,求出m的值,若不存在,說明理由。

 

 

 

 

 

 

 

查看答案和解析>>

設(shè)函數(shù)

(I)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;

(II)令,其圖像上任意一點P處切線的斜率恒成立,求實數(shù)的取值范圍;

(III)當(dāng)時,方程在區(qū)間內(nèi)有唯一實數(shù)解,求實數(shù)的取值范圍。

 

查看答案和解析>>

設(shè)函數(shù)
(I)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;
(II)令,其圖像上任意一點P處切線的斜率恒成立,求實數(shù)的取值范圍;
(III)當(dāng)時,方程在區(qū)間內(nèi)有唯一實數(shù)解,求實數(shù)的取值范圍。

查看答案和解析>>

 

第I卷(選擇題 共60分)

一、選擇題(每小題5分,共60分)

1―6ADDCAB  7―12CBBCBC

第Ⅱ卷(非選擇題 共90分)

二、填空題(每小題4分,共16分)

13.2  14.   15.  16.①②

三、解答題(本大題共6小題,共74分)

17.解:(I)

      

      

          4分

       又    2分

   (II)    

           2分

             1分

      

      

              3分

18.(I)證明:由題意可知CD、CB、CE兩兩垂直。

       可建立如圖所示的空間直角坐標(biāo)系

       則       2分

       由  1分

      

       又平面BDF,

       平面BDF。       2分

   (Ⅱ)解:設(shè)異面直線CM與FD所成角的大小為

      

      

       。

       即異面直線CM與FD所成角的大小為   3分

   (III)解:平面ADF,

       平面ADF的法向量為      1分

       設(shè)平面BDF的法向量為

       由

            1分

      

          1分

       由圖可知二面角A―DF―B的大小為   1分

19.解:(I)設(shè)該小組中有n個女生,根據(jù)題意,得

      

       解得n=6,n=4(舍去)

       該小組中有6個女生。        6分

   (Ⅱ)由題意,甲、乙、丙3人中通過測試的人數(shù)不少于2人,

       即通過測試的人數(shù)為3人或2人。

       記甲、乙、丙通過測試分別為事件A、B、C,則

      

            6分

20.解:(I)的等差中項,

             1分

      

             2分

                1分

   (Ⅱ)

               2分

      

          3分

       ,   

       當(dāng)且僅當(dāng)時等號成立。

      

21.解:(I)到漸近線=0的距離為,兩條準(zhǔn)線之間的距離為1,

               3分

            1分

   (II)由題意,設(shè)

       由     1分

            3分

   (III)由雙曲線和ABCD的對稱性,可知A與C、B與D關(guān)于原點對稱。

       而   

       1分

       點O到直線的距離   1分

              1分

             1分

22.解:(I)當(dāng)t=1時,   1分

       當(dāng)變化時,的變化情況如下表:

      

(-1,1)

1

(1,2)

0

+

極小值

       由上表,可知當(dāng)    2分

            1分

   (Ⅱ)

      

       顯然的根。    1分

       為使處取得極值,必須成立。

       即有    2分

      

       的個數(shù)是2。

   (III)當(dāng)時,若恒成立,

       即   1分

      

       ①當(dāng)時,

      

       上單調(diào)遞增。

      

      

       解得    1分

       ②當(dāng)時,令

       得(負值舍去)。

   (i)若時,

       上單調(diào)遞減。

      

      

           1分

   (ii)若

       時,

       當(dāng)

       上單調(diào)遞增,

      

       要使,則

      

            2分

   (注:可證上恒為負數(shù)。)

       綜上所述,t的取值范圍是。        1分

 


同步練習(xí)冊答案
  • <kbd id="vuktv"><td id="vuktv"><nobr id="vuktv"></nobr></td></kbd>

      <big id="vuktv"><acronym id="vuktv"></acronym></big><pre id="vuktv"><meter id="vuktv"></meter></pre>