題目列表(包括答案和解析)
(16分)有如下結(jié)論:“圓上一點(diǎn)處的切線方程為”,類比也有結(jié)論:“橢圓處的切線方程為”,過(guò)橢圓C:的右準(zhǔn)線l上任意一點(diǎn)M引橢圓C的兩條切線,切點(diǎn)為 A、B.
(1)求證:直線AB恒過(guò)一定點(diǎn);(2)當(dāng)點(diǎn)M在的縱坐標(biāo)為1時(shí),求△ABM的面積
、(本小題滿分16分)已知a,b是實(shí)數(shù),函數(shù) 和是的導(dǎo)函數(shù),若在區(qū)間I上恒成立,則稱和在區(qū)間I上單調(diào)性一致
(1)設(shè),若函數(shù)和在區(qū)間上單調(diào)性一致,求實(shí)數(shù)b的取值范圍;
(2)設(shè)且,若函數(shù)和在以a,b為端點(diǎn)的開(kāi)區(qū)間上單調(diào)性一致,求|a-b|的最大值。
、設(shè)等差數(shù)列的前n項(xiàng)和為 ()
A.18 B.17 C.16 D.15
一.選擇題:(本大共12小題,每小題5分,在每小題的四個(gè)選項(xiàng)中只有一個(gè)是正確的.)
題號(hào)
1
2
3
4
5
6
7
8
9
10
11
12
答案
B
D
D
C
D
A
B
C
B
C
A
D
二、填空題(本大題4個(gè)小題,每小題4分,共16分,只填結(jié)果,不要過(guò)程)
13、 3 14、 9
15、 240 16、
三.解答題(本大題共6個(gè)小題,共74分,解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。)
17、證明:(1)連結(jié),設(shè)
連結(jié), 是正方體 是平行四邊形
∥且 2分
又分別是的中點(diǎn),∥且
是平行四邊形 4分
∥面,面
∥面 6分
(2)面 7分
又,
9分
同理可證, 11分
又
面 12分
18.解:(1)=3125;------4分(2)A=120; ------8分(3)=1200-----12分.
平面平面 -----------------------------------------------------6分
(2)ABCD為菱形,,過(guò)O在平面OEB內(nèi)作OFBE于F,連OF, AFO為二面角的平面角, tanAFO = -------12分
20.(1) ---------4分
.(2) ---------8分
.(3) ---------12分
21.解:(1)過(guò)A作BC的反向延長(zhǎng)線的垂線,交于點(diǎn)E,連ED,
∵面ACB⊥面BCD,∴AE⊥面BCD 又AB=BC=BD,
∠ABC=∠DBC=1200
∴AE=ED= ∴∠ADE= ----------4分
(2)過(guò)D作EC的平行線與過(guò)C平行于ED的直線交于F。
由(1)知,EDFC為矩形 ∵DF⊥DE, ∴DF⊥AD,即BC⊥AD ∴ 900-即為所求 ----8分
(3)過(guò)E作EG⊥BD于G,連結(jié)AG
由三垂線定理知,AG⊥BD。由 ,
在Rt△AEG中,tan∠AGE=2, ∠AGE=arctan2
∴二面角A―BD―C的度數(shù)為 π-arctan2 - -------12分
22. (1)∵B1D⊥面ABC ∴B1D⊥AC
又∵AC⊥BC 且B1D∩BC=D ∴平面 -------4分
(2)連結(jié)B
∴B
∵B1D⊥BC 且D為的中點(diǎn) ∴B
(3)過(guò)C1在平面內(nèi)作C1O∥B1D,交BC的延長(zhǎng)線于O點(diǎn),
過(guò)O作OM⊥AB于M點(diǎn),連結(jié)C
∴∠OMC1是二面角的平面角---------11分
設(shè)=
∴BD=a , C1O= B1D=a , BO=
∵∠CBA= , ∴OM=a =B1D , ∴∠OMC1=
∴二面角的大小為 ---------14分
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com