16 查看更多

 

題目列表(包括答案和解析)

16、16、如圖,在正方體ABCD-A1B1C1D1中,M、N分別是棱C1D1、C1C的中點(diǎn).以下四個(gè)結(jié)論:
①直線AM與直線CC1相交;
②直線AM與直線BN平行;
③直線AM與直線DD1異面;
④直線BN與直線MB1異面.
其中正確結(jié)論的序號(hào)為
③④

(注:把你認(rèn)為正確的結(jié)論序號(hào)都填上)

查看答案和解析>>

16π3
化為2kπ+α(0≤α<2kπ,k∈Z)的形式為
 

查看答案和解析>>

16π
3
化成α+2kπ(0≤α<2π,k∈Z)的形式是( 。

查看答案和解析>>

①16的4次方根是2;
416
的運(yùn)算結(jié)果是±2;
③當(dāng)n為大于1的奇數(shù)時(shí),
na
對(duì)任意a∈R都有意義;
④當(dāng)n為大于1的偶數(shù)時(shí),
na
只有當(dāng)a≥0時(shí)才有意義.
其中正確的序號(hào)是
③④
③④

查看答案和解析>>

(16分)有如下結(jié)論:“圓上一點(diǎn)處的切線方程為”,類比也有結(jié)論:“橢圓處的切線方程為”,過橢圓C:的右準(zhǔn)線l上任意一點(diǎn)M引橢圓C的兩條切線,切點(diǎn)為 A、B.

(1)求證:直線AB恒過一定點(diǎn);(2)當(dāng)點(diǎn)M在的縱坐標(biāo)為1時(shí),求△ABM的面積

查看答案和解析>>

一、選擇題(每題5分,共50分)

題號(hào)

1

2

3

4

5

6

7

8

9

10

答案

C

A

A

B

D

B

D

C

D

B

二、填空題(每題5分,共20分,兩空的前一空3分,后一空2分)

11.     12.4   13.   

14.      15.

三、解答題(本大題共6小題,共80分)

16.(本題滿分12分)

如圖A、B是單位圓O上的點(diǎn),且在第二象限. C是圓與軸正半軸的交點(diǎn),A點(diǎn)的坐標(biāo)為,△AOB為正三角形.

(Ⅰ)求; 

(Ⅱ)求.

        第16題圖

        (2)因?yàn)槿切蜛OB為正三角形,所以

        ,,       -----------------------------6分

        所以=

             -------------------------10分

        =.    --------------------------------------12分

        17、(本題滿分12分)

        如圖,四棱錐的底面是邊長為1的正方形,

        (Ⅰ)求證:平面;

        (Ⅱ)求四棱錐的體積.

        (Ⅰ)因?yàn)樗睦忮F的底面是邊長為1的正方形,

        所以,所以              ------------4分

        所以平面                        --------------------------------------8分

        (Ⅱ)四棱錐的底面積為1,

        因?yàn)?sub>平面,所以四棱錐的高為1,

        所以四棱錐的體積為.                         --------------------12分

        18.(本小題滿分14分)

        分組

        頻數(shù)

        頻率

        50.5~60.5

        4

        0.08

        60.5~70.5

         

        0.16

        70.5~80.5

        10

         

        80.5~90.5

        16

        0.32

        90.5~100.5

         

         

        合計(jì)

        50

         

        為了讓學(xué)生了解環(huán)保知識(shí),增強(qiáng)環(huán)保意識(shí),某中學(xué)舉行了一次“環(huán)保知識(shí)競賽”,共有900名學(xué)生參加了這次競賽. 為了解本次競賽成績情況,從中抽取了部分學(xué)生的成績(得分均為整數(shù),滿分為100分)進(jìn)行統(tǒng)計(jì). 請(qǐng)你根據(jù)尚未完成并有局部污損的頻率分布表和頻數(shù)分布直方圖,解答下列問題:

         

         

         

         

         

         

         

         

         

         

         

        (Ⅰ)填充頻率分布表的空格(將答案直接填在表格內(nèi));

        (Ⅱ)補(bǔ)全頻數(shù)條形圖;

        (Ⅲ)若成績?cè)?5.5~85.5分的學(xué)生為二等獎(jiǎng),問獲得二等獎(jiǎng)的學(xué)生約為多少人?

        解:(1)

        分組

        頻數(shù)

        頻率

        50.5~60.5

        4

        0.08

        60.5~70.5

        8

        0.16

        70.5~80.5

        10

        0.20

        80.5~90.5

        16

        0.32

        90.5~100.5

        12

        0.24

        合計(jì)

        50

        1.00

         

         

         

         

         

         

         

        ---------------------4分

        (2) 頻數(shù)直方圖如右上所示--------------------------------8分

        (3) 成績?cè)?5.5~80.5分的學(xué)生占70.5~80.5分的學(xué)生的,因?yàn)槌煽冊(cè)?0.5~80.5分的學(xué)生頻率為0.2 ,所以成績?cè)?6.5~80.5分的學(xué)生頻率為0.1 ,---------10分

        成績?cè)?0.5~85.5分的學(xué)生占80.5~90.5分的學(xué)生的,因?yàn)槌煽冊(cè)?0.5~90.5分的學(xué)生頻率為0.32 ,所以成績?cè)?0.5~85.5分的學(xué)生頻率為0.16  -------------12分

        所以成績?cè)?6.5~85.5分的學(xué)生頻率為0.26,

        由于有900名學(xué)生參加了這次競賽,

        所以該校獲得二等獎(jiǎng)的學(xué)生約為0.26´900=234(人)       ------------------14分

        19.(本小題滿分14分)

        拋物線的準(zhǔn)線的方程為,該拋物線上的每個(gè)點(diǎn)到準(zhǔn)線的距離都與到定點(diǎn)N的距離相等,圓N是以N為圓心,同時(shí)與直線 相切的圓,

        (Ⅰ)求定點(diǎn)N的坐標(biāo);

        (Ⅱ)是否存在一條直線同時(shí)滿足下列條件:

        分別與直線交于A、B兩點(diǎn),且AB中點(diǎn)為

        被圓N截得的弦長為2;

        解:(1)因?yàn)閽佄锞的準(zhǔn)線的方程為

        所以,根據(jù)拋物線的定義可知點(diǎn)N是拋物線的焦點(diǎn),             -----------2分

        所以定點(diǎn)N的坐標(biāo)為                              ----------------------------3分

        (2)假設(shè)存在直線滿足兩個(gè)條件,顯然斜率存在,                -----------4分

        設(shè)的方程為,                   ------------------------5分

        以N為圓心,同時(shí)與直線 相切的圓N的半徑為, ----6分

        方法1:因?yàn)?sub>被圓N截得的弦長為2,所以圓心到直線的距離等于1,   -------7分

        ,解得,                -------------------------------8分

        當(dāng)時(shí),顯然不合AB中點(diǎn)為的條件,矛盾!            --------------9分

        當(dāng)時(shí),的方程為               ----------------------------10分

        ,解得點(diǎn)A坐標(biāo)為,               ------------------11分

        ,解得點(diǎn)B坐標(biāo)為,          ------------------12分

        顯然AB中點(diǎn)不是,矛盾!                ----------------------------------13分

        所以不存在滿足條件的直線.                 ------------------------------------14分

        方法2:由,解得點(diǎn)A坐標(biāo)為,      ------7分

        ,解得點(diǎn)B坐標(biāo)為,        ------------8分

        因?yàn)锳B中點(diǎn)為,所以,解得,     ---------10分

        所以的方程為

        圓心N到直線的距離,                   -------------------------------11分

        因?yàn)?sub>被圓N截得的弦長為2,所以圓心到直線的距離等于1,矛盾!   ----13分

        所以不存在滿足條件的直線.               -------------------------------------14分

        方法3:假設(shè)A點(diǎn)的坐標(biāo)為

        因?yàn)锳B中點(diǎn)為,所以B點(diǎn)的坐標(biāo)為,         -------------8分

        又點(diǎn)B 在直線上,所以,                ----------------------------9分

        所以A點(diǎn)的坐標(biāo)為,直線的斜率為4,

        所以的方程為,                    -----------------------------10分

        圓心N到直線的距離,                     -----------------------------11分

        因?yàn)?sub>被圓N截得的弦長為2,所以圓心到直線的距離等于1,矛盾! ---------13分

        所以不存在滿足條件的直線.              ----------------------------------------14分

        20.(本小題滿分14分)

        觀察下列三角形數(shù)表

                                 1            -----------第一行

                               2    2         -----------第二行

                             3   4    3       -----------第三行

                           4   7    7   4     -----------第四行

                         5   11  14  11   5

        …    …      …      …

                  …    …    …     …      …

        假設(shè)第行的第二個(gè)數(shù)為,

        (Ⅰ)依次寫出第六行的所有個(gè)數(shù)字;

        (Ⅱ)歸納出的關(guān)系式并求出的通項(xiàng)公式;

        (Ⅲ)設(shè)求證:

        解:(1)第六行的所有6個(gè)數(shù)字分別是6,16,25,25,16,6; --------------2分

        (2)依題意   -------------------------------5分

            ------------------------7分

        ,

        所以;    -------------------------------------9分

        (3)因?yàn)?sub>所以  -------------11分

        ---14分

        21.(本小題滿分14分)

        已知函數(shù)取得極小值.

        (Ⅰ)求ab的值;

        (Ⅱ)設(shè)直線. 若直線l與曲線S同時(shí)滿足下列兩個(gè)條件:(1)直線l與曲線S相切且至少有兩個(gè)切點(diǎn);(2)對(duì)任意xR都有. 則稱直線l為曲線S的“上夾線”.

        試證明:直線是曲線的“上夾線”.

        解:(I)因?yàn)?sub>,所以                        ---------------1分

        ,                  -------------------------------2分

        解得,      --------------------------------------------------------------------3分

        此時(shí)

        當(dāng)時(shí),當(dāng)時(shí),                   -------------------------5分

        所以時(shí)取極小值,所以符合題目條件;                  ----------------6分

        (II)由,

        當(dāng)時(shí),,此時(shí),

        ,所以是直線與曲線的一個(gè)切點(diǎn);                     -----------8分

        當(dāng)時(shí),,此時(shí),,

        ,所以是直線與曲線的一個(gè)切點(diǎn);                     -----------10分

        所以直線l與曲線S相切且至少有兩個(gè)切點(diǎn);

        對(duì)任意xR,

        所以      ---------------------------------------------------------------------13分

        因此直線是曲線的“上夾線”.     ----------14分


        同步練習(xí)冊(cè)答案