(Ⅰ)求動點的軌跡的方程, 查看更多

 

題目列表(包括答案和解析)


(1)求動點的軌跡的方程;
(2)已知圓過定點,圓心在軌跡上運動,且圓軸交于、兩點,設(shè),,求的最大值.

查看答案和解析>>

已知動點的軌跡是曲線,滿足點到點的距離與它到直線的距離之比為常數(shù),又點在曲線上.

(1)求曲線的方程;

(2)已知直線與曲線交于不同的兩點,求實數(shù)的取值范圍.

查看答案和解析>>

已知動點的軌跡是曲線,滿足點到點的距離與它到直線的距離之比為常數(shù),又點在曲線上.
(1)求曲線的方程;
(2)已知直線與曲線交于不同的兩點,求實數(shù)的取值范圍.

查看答案和解析>>

動點P在x軸與直線l:y=3之間的區(qū)域(含邊界)上運動,且到點F(0,1)和直線l的距離之和為4.
(1)求點P的軌跡C的方程;
(2)過點Q(0,-1)作曲線C的切線,求所作的切線與曲線C所圍成區(qū)域的面積.

查看答案和解析>>

動點P與點F(1,0)的距離和它到直線l:x=-1的距離相等,記點P的軌跡為曲線C1.圓C2的圓心T是曲線C1上的動點,圓C2與y軸交于M,N兩點,且|MN|=4.
(1)求曲線C1的方程;
(2)設(shè)點A(a,0)(a>2),若點A到點T的最短距離為a-1,試判斷直線l與圓C2的位置關(guān)系,并說明理由.

查看答案和解析>>

一、              選擇題:本大題共8小題,每小題5分,共40分.在每小題給出的四個備選項中,有且只有一項是符合要求的.

題號

1

2

3

4

5

6

7

8

答案

D

A

A

C

B

B

C

A

二、              填空題:本大題共7小題,每小題5分,共30分.其中13~15小題是選做題,考生只能選做兩題,若三題全答,則只計算前兩題得分.

9.             10.             11.

12.②③                                13.

14.,                     15.

三、解答題:本大題共6小題,共80分.解答應(yīng)寫出文字說明、證明過程或演算步驟.

16.    解:(Ⅰ)因為,,所以

   

因此,當,即)時,取得最大值

(Ⅱ)由,兩邊平方得

,即

因此,

17.    解:(Ⅰ)記“小球落入袋中”為事件,“小球落入袋中”為事件,則事件的對立事件為,而小球落入袋中當且僅當小球一直向左落下或一直向右落下,故

,

從而

(Ⅱ)顯然,隨機變量,故

,

18.    解: 建立如圖所示的空間直角坐標系,

并設(shè),則

    (Ⅰ),

所以,從而得

(Ⅱ)設(shè)是平面

法向量,則由,

,

可以取

    顯然,為平面的法向量.

    設(shè)二面角的平面角為,則此二面角的余弦值

19.    解:(Ⅰ)依題意,有),化簡得

),

這就是動點的軌跡的方程;

    (Ⅱ)依題意,可設(shè)、、,則有

,

兩式相減,得,由此得點的軌跡方程為

).

    設(shè)直線(其中),則

,

故由,即,解之得的取值范圍是

20.    解:(Ⅰ)依題意知:直線是函數(shù)在點處的切線,故其斜率

,

所以直線的方程為

    又因為直線的圖像相切,所以由

,

不合題意,舍去);

    (Ⅱ)因為),所以

時,;當時,

因此,上單調(diào)遞增,在上單調(diào)遞減.

因此,當時,取得最大值;

(Ⅲ)當時,.由(Ⅱ)知:當時,,即.因此,有

21.    解:(Ⅰ),

(Ⅱ)依題意,得,由此及

,

    由(Ⅰ)可猜想:).

    下面用數(shù)學歸納法予以證明:

    (1)當時,命題顯然成立;

    (2)假定當時命題成立,即有,則當時,由歸納假設(shè)及

,即

,

解之得

不合題意,舍去),

即當時,命題成立.

    由(1)、(2)知:命題成立.

(Ⅲ)

       

       

),則,所以上是增函數(shù),故當時,取得最小值,即當時,

,

    ,即

   

解之得,實數(shù)的取值范圍為


同步練習冊答案