(Ⅰ)求直線的方程及的值, 查看更多

 

題目列表(包括答案和解析)

已知直線的方向向量為及定點,動點滿足,
MN
+
MF
=2
MG
MG
•(
MN
-
MF
)=0
,其中點N在直線l上.
(1)求動點M的軌跡C的方程;
(2)設(shè)A、B是軌跡C上異于原點O的兩個不同動點,直線OA和OB的傾斜角分別為α和β,若α+β=θ為定值(0<θ<π),試問直線AB是否恒過定點,若AB恒過定點,請求出該定點的坐標(biāo),若AB不恒過定點,請說明理由.

查看答案和解析>>

已知直線的方向向量為及定點,動點滿足,
MN
+
MF
=2
MG
,
MG
•(
MN
-
MF
)=0
,其中點N在直線l上.
(1)求動點M的軌跡C的方程;
(2)設(shè)A、B是軌跡C上異于原點O的兩個不同動點,直線OA和OB的傾斜角分別為α和β,若α+β=θ為定值(0<θ<π),試問直線AB是否恒過定點,若AB恒過定點,請求出該定點的坐標(biāo),若AB不恒過定點,請說明理由.

查看答案和解析>>

已知直線的方向向量為及定點,動點滿足,,,其中點N在直線l上.
(1)求動點M的軌跡C的方程;
(2)設(shè)A、B是軌跡C上異于原點O的兩個不同動點,直線OA和OB的傾斜角分別為α和β,若α+β=θ為定值(0<θ<π),試問直線AB是否恒過定點,若AB恒過定點,請求出該定點的坐標(biāo),若AB不恒過定點,請說明理由.

查看答案和解析>>

直線l:y=x+b與拋物線C:x2=4y相切于點A.
(Ⅰ)求實數(shù)b的值,及點A的坐標(biāo);
(Ⅱ)求過點B(0,-1)的拋物線C的切線方程.

查看答案和解析>>

已知直線的參數(shù)方程為,(為參數(shù),為傾斜角,且)與曲線=1交于兩點.

    (I)寫出直線的一般方程及直線通過的定點的坐標(biāo);

    (Ⅱ)求的最大值。

 

查看答案和解析>>

一、              選擇題:本大題共8小題,每小題5分,共40分.在每小題給出的四個備選項中,有且只有一項是符合要求的.

題號

1

2

3

4

5

6

7

8

答案

D

A

A

C

B

B

C

A

二、              填空題:本大題共7小題,每小題5分,共30分.其中13~15小題是選做題,考生只能選做兩題,若三題全答,則只計算前兩題得分.

9.             10.             11.

12.②③                                13.,

14.                     15.,

三、解答題:本大題共6小題,共80分.解答應(yīng)寫出文字說明、證明過程或演算步驟.

16.    解:(Ⅰ)因為,,所以

   

因此,當(dāng),即)時,取得最大值

(Ⅱ)由,兩邊平方得

,即

因此,

17.    解:(Ⅰ)記“小球落入袋中”為事件,“小球落入袋中”為事件,則事件的對立事件為,而小球落入袋中當(dāng)且僅當(dāng)小球一直向左落下或一直向右落下,故

從而;

(Ⅱ)顯然,隨機變量,故

18.    解: 建立如圖所示的空間直角坐標(biāo)系,

并設(shè),則

    (Ⅰ),,

所以,從而得

;

(Ⅱ)設(shè)是平面

法向量,則由

,

可以取

    顯然,為平面的法向量.

    設(shè)二面角的平面角為,則此二面角的余弦值

19.    解:(Ⅰ)依題意,有),化簡得

),

這就是動點的軌跡的方程;

    (Ⅱ)依題意,可設(shè)、,則有

兩式相減,得,由此得點的軌跡方程為

).

    設(shè)直線(其中),則

故由,即,解之得的取值范圍是

20.    解:(Ⅰ)依題意知:直線是函數(shù)在點處的切線,故其斜率

所以直線的方程為

    又因為直線的圖像相切,所以由

不合題意,舍去);

    (Ⅱ)因為),所以

當(dāng)時,;當(dāng)時,

因此,上單調(diào)遞增,在上單調(diào)遞減.

因此,當(dāng)時,取得最大值;

(Ⅲ)當(dāng)時,.由(Ⅱ)知:當(dāng)時,,即.因此,有

21.    解:(Ⅰ),,;

(Ⅱ)依題意,得,,由此及

,

    由(Ⅰ)可猜想:).

    下面用數(shù)學(xué)歸納法予以證明:

    (1)當(dāng)時,命題顯然成立;

    (2)假定當(dāng)時命題成立,即有,則當(dāng)時,由歸納假設(shè)及

,即

,

解之得

不合題意,舍去),

即當(dāng)時,命題成立.

    由(1)、(2)知:命題成立.

(Ⅲ)

       

       

),則,所以上是增函數(shù),故當(dāng)時,取得最小值,即當(dāng)時,

,

    ,即

   

解之得,實數(shù)的取值范圍為


同步練習(xí)冊答案