D.函數(shù)圖象的對稱軸方程均可表示為 查看更多

 

題目列表(包括答案和解析)

 

第I卷(選擇題 共60分)

一、選擇題(每小題5分,共60分)

1―6ADDCAB  7―12CBBCBC

第Ⅱ卷(非選擇題 共90分)

二、填空題(每小題4分,共16分)

13.2  14.   15.  16.①②

三、解答題(本大題共6小題,共74分)

17.解:(I)

      

      

          4分

       又    2分

   (II)    

           2分

             1分

      

      

              3分

18.(I)證明:由題意可知CD、CB、CE兩兩垂直。

       可建立如圖所示的空間直角坐標系

       則       2分

       由  1分

      

<video id="61116"><abbr id="61116"><mark id="61116"></mark></abbr></video>
      1. <th id="61116"><listing id="61116"></listing></th>
      2. <tt id="61116"></tt>

        <dl id="61116"></dl>
        1.        又平面BDF,

                 平面BDF。       2分

             (Ⅱ)解:設異面直線CM與FD所成角的大小為

                

                

                 。

                 即異面直線CM與FD所成角的大小為   3分

             (III)解:平面ADF,

                 平面ADF的法向量為      1分

                 設平面BDF的法向量為

                 由

                      1分

                

                    1分

                 由圖可知二面角A―DF―B的大小為   1分

          19.解:(I)設該小組中有n個女生,根據(jù)題意,得

                

                 解得n=6,n=4(舍去)

                 該小組中有6個女生。        6分

             (Ⅱ)由題意,甲、乙、丙3人中通過測試的人數(shù)不少于2人,

                 即通過測試的人數(shù)為3人或2人。

                 記甲、乙、丙通過測試分別為事件A、B、C,則

                

                      6分

          20.解:(I)的等差中項,

                       1分

                

                       2分

                          1分

             (Ⅱ)

                         2分

                

                    3分

                 ,   

                 當且僅當時等號成立。

                

          21.解:(I)到漸近線=0的距離為,兩條準線之間的距離為1,

                         3分

                      1分

             (II)由題意,設

                 由     1分

                      3分

             (III)由雙曲線和ABCD的對稱性,可知A與C、B與D關于原點對稱。

                 而   

                 1分

                 點O到直線的距離   1分

                        1分

                       1分

          22.解:(I)當t=1時,   1分

                 當變化時,的變化情況如下表:

                

          (-1,1)

          1

          (1,2)

          0

          +

          極小值

                 由上表,可知當    2分

                      1分

             (Ⅱ)

                

                 顯然的根。    1分

                 為使處取得極值,必須成立。

                 即有    2分

                

                 的個數(shù)是2。

             (III)當時,若恒成立,

                 即   1分

                

                 ①當時,

                

                 上單調(diào)遞增。

                

                

                 解得    1分

                 ②當時,令

                 得(負值舍去)。

             (i)若時,

                 上單調(diào)遞減。

                

                

                     1分

             (ii)若

                 時,

                 當

                 上單調(diào)遞增,

                

                 要使,則

                

                      2分

             (注:可證上恒為負數(shù)。)

                 綜上所述,t的取值范圍是。        1分

           


          同步練習冊答案
          <strike id="61116"><s id="61116"><source id="61116"></source></s></strike>