A. B.1 C. D. 4 查看更多

 

題目列表(包括答案和解析)

精英家教網(wǎng)A.(選修4-4坐標(biāo)系與參數(shù)方程)已知點(diǎn)A是曲線ρ=2sinθ上任意一點(diǎn),則點(diǎn)A到直線ρsin(θ+
π3
)=4
的距離的最小值是
 

B.(選修4-5不等式選講)不等式|x-log2x|<x+|log2x|的解集是
 

C.(選修4-1幾何證明選講)如圖所示,AC和AB分別是圓O的切線,且OC=3,AB=4,延長AO到D點(diǎn),則△ABD的面積是
 

查看答案和解析>>

精英家教網(wǎng)A.選修4-1:幾何證明選講
銳角三角形ABC內(nèi)接于⊙O,∠ABC=60?,∠BAC=40?,作OE⊥AB交劣弧
AB
于點(diǎn)E,連接EC,求∠OEC.
B.選修4-2:矩陣與變換
曲線C1=x2+2y2=1在矩陣M=[
12
01
]的作用下變換為曲線C2,求C2的方程.
C.選修4-4:坐標(biāo)系與參數(shù)方程
P為曲線C1
x=1+cosθ
y=sinθ
(θ為參數(shù))上一點(diǎn),求它到直線C2
x=1+2t
y=2
(t為參數(shù))距離的最小值.
D.選修4-5:不等式選講
設(shè)n∈N*,求證:
C
1
n
+
C
2
N
+L+
C
N
N
n(2n-1)

查看答案和解析>>

精英家教網(wǎng)A.如圖,四邊形ABCD內(nèi)接于⊙O,弧AB=弧AD,過A點(diǎn)的切線交CB的延長線于E點(diǎn).
求證:AB2=BE•CD.
B.已知矩陣M
2-3
1-1
所對應(yīng)的線性變換把點(diǎn)A(x,y)變成點(diǎn)A′(13,5),試求M的逆矩陣及點(diǎn)A的坐標(biāo).
C.已知圓的極坐標(biāo)方程為:ρ2-4
2
ρcos(θ-
π
4
)+6=0

(1)將圓的極坐標(biāo)方程化為直角坐標(biāo)方程;
(2)若點(diǎn)P(x,y)在該圓上,求x+y的最大值和最小值.
D.解不等式|2x-1|<|x|+1.

查看答案和解析>>

A.選修4-1:幾何證明選講
如圖,直角△ABC中,∠B=90°,以BC為直徑的⊙O交AC于點(diǎn)D,點(diǎn)E是AB的中點(diǎn).
求證:DE是⊙O的切線.
B.選修4-2:矩陣與變換
已知二階矩陣A有特征值-1及其對應(yīng)的一個(gè)特征向量為
1
-4
,點(diǎn)P(2,-1)在矩陣A對應(yīng)的變換下得到點(diǎn)P′(5,1),求矩陣A.
C.選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.已知直線l的極坐標(biāo)方程為ρcos(θ-
π
4
)=
2
,曲線C的參數(shù)方程為
x=2cosα
y=sinα
(α為參數(shù)),求曲線C截直線l所得的弦長.
D.選修4-5:不等式選講
已知a,b,c都是正數(shù),且abc=8,求證:log2(2+a)+log2(2+b)+log2(2+c)≥6.

查看答案和解析>>

A.1個(gè)               B.2個(gè)            C.3個(gè)                 D.4個(gè)

 

查看答案和解析>>

 

一、選擇題

AACCD   BBDDD   AC

二、填空題

13.    14.6    15.①⑤    16.

三、解答題

17.解:(Ⅰ)因?yàn)?sub>,

由正弦定理,得,              ……3分

整理,得

因?yàn)?sub>、、的三內(nèi)角,所以,    

因此  .                                                 ……6分

    • 20090520

      由余弦定理,得,所以,      ……10分

      解方程組,得 .                       ……12分

      18.解:記 “過第一關(guān)”為事件A,“第一關(guān)第一次過關(guān)”為事件A1,“第一關(guān)第二次過關(guān)”為事件A2;“過第二關(guān)”為事件B, “第二關(guān)第一次過關(guān)”為事件B1,“第二關(guān)第二次過關(guān)”為事件B2;

      (Ⅰ)該同學(xué)獲得900元獎(jiǎng)金,即該同學(xué)順利通過第一關(guān),但未通過第二關(guān),則所求概率為

      .              ……………………………3分

      (Ⅱ)該同學(xué)通過第一關(guān)的概率為:

      , ……………………5分

      該同學(xué)通過第一、二關(guān)的概率為:

               

      ,   ………………………7分

       ∴ 在該同學(xué)已順利通過第一關(guān)的條件下,他獲3600元獎(jiǎng)金的概率是

      .     ………………………………………………………8分

      (Ⅲ)該同學(xué)獲得獎(jiǎng)金額可能取值為:0 元,900 元, 3600 元.………9分

       ,  ……………………………10分    

      , 

      ,         

      (另解:=1-

             ∴  . ……12分

      19.(本題滿分12分)

      解: (Ⅰ)當(dāng)中點(diǎn)時(shí),有∥平面.…1分

      證明:連結(jié)連結(jié)

      ∵四邊形是矩形  ∴中點(diǎn)

      ∥平面,

      平面,平面

      ,------------------4分

      的中點(diǎn).------------------5分

      (Ⅱ)建立空間直角坐標(biāo)系如圖所示,

      ,,,

      , ------------7分

      所以

      設(shè)為平面的法向量,

      則有,

      ,可得平面的一個(gè)

      法向量為,              ----------------9分

      而平面的法向量為,    ---------------------------10分

      所以,

      所以二面角的余弦值為----------------------------12分

      學(xué)科網(wǎng)(Zxxk.Com)20.(Ⅰ)設(shè)橢圓C的方程為,

      則由題意知

      ∴橢圓C的方程為      ……………………4分

      (Ⅱ)假設(shè)右焦點(diǎn)可以為的垂心,

      ,∴直線的斜率為,

      從而直線的斜率為1.設(shè)其方程為, …………………………………5分

      聯(lián)立方程組,

      整理可得:   ……………6分.

             ,∴

      設(shè),則

      .……………7分

             于是

            

      解之得.    ……………10分

      當(dāng)時(shí),點(diǎn)即為直線與橢圓的交點(diǎn),不合題意;

      當(dāng)時(shí),經(jīng)檢驗(yàn)知和橢圓相交,符合題意.

      所以,當(dāng)且僅當(dāng)直線的方程為時(shí),

      點(diǎn)的垂心.…………12分  

      21.解:(Ⅰ)的導(dǎo)數(shù)

      ,解得;令,

      解得.………………………2分

      從而內(nèi)單調(diào)遞減,在內(nèi)單調(diào)遞增.

      所以,當(dāng)時(shí),取得最小值.……………………………5分

      (II)因?yàn)椴坏仁?sub>的解集為P,且

      所以,對任意的,不等式恒成立,……………………………6分

      ,得

      當(dāng)時(shí),上述不等式顯然成立,故只需考慮的情況!7分

      變形為  ………………………………………………8分

      ,則

             令,解得;令,

      解得.…………………………10分

             從而內(nèi)單調(diào)遞減,在內(nèi)單調(diào)遞增.

      所以,當(dāng)時(shí),

      取得最小值,從而,

      所求實(shí)數(shù)的取值范圍是.………………12分

      22.解:(Ⅰ)當(dāng)時(shí),    

       。á颍┰中,

        在中,,

      當(dāng)時(shí),中第項(xiàng)是,

      中的第項(xiàng)是,

      所以中第項(xiàng)與中的第項(xiàng)相等.

      當(dāng)時(shí),中第項(xiàng)是,

      中的第項(xiàng)是

      所以中第項(xiàng)與中的第項(xiàng)相等.

        ∴ 

      (Ⅲ)

        

      +

      當(dāng)且僅當(dāng),等號(hào)成立.

      ∴當(dāng)時(shí),最。

       


      同步練習(xí)冊答案