題目列表(包括答案和解析)
設(shè)函數(shù),若為函數(shù)的一個極值點,則下列圖象不可能為的圖象是
【答案】D
【解析】設(shè),∴,
又∴為的一個極值點,
∴,即,
∴,
當(dāng)時,,即對稱軸所在直線方程為;
當(dāng)時,,即對稱軸所在直線方程應(yīng)大于1或小于-1.
如圖,直線與拋物線交于兩點,與軸相交于點,且.
(1)求證:點的坐標(biāo)為;
(2)求證:;
(3)求的面積的最小值.
【解析】設(shè)出點M的坐標(biāo),并把過點M的方程設(shè)出來.為避免對斜率不存在的情況進(jìn)行討論,可以設(shè)其方程為,然后與拋物線方程聯(lián)立消x,根據(jù),即可建立關(guān)于的方程.求出的值.
(2)在第(1)問的基礎(chǔ)上,證明:即可.
(3)先建立面積S關(guān)于m的函數(shù)關(guān)系式,根據(jù)建立即可,然后再考慮利用函數(shù)求最值的方法求最值.
【答案】
【解析】設(shè),有幾何意義知的最小值為, 又因為存在實數(shù)x滿足,所以只要2大于等于f(x)的最小值即可.即2,解得:∈,所以a的取值范圍是.故答案為:.
設(shè)拋物線:(>0)的焦點為,準(zhǔn)線為,為上一點,已知以為圓心,為半徑的圓交于,兩點.
(Ⅰ)若,的面積為,求的值及圓的方程;
(Ⅱ)若,,三點在同一條直線上,直線與平行,且與只有一個公共點,求坐標(biāo)原點到,距離的比值.
【命題意圖】本題主要考查圓的方程、拋物線的定義、直線與拋物線的位置關(guān)系、點到直線距離公式、線線平行等基礎(chǔ)知識,考查數(shù)形結(jié)合思想和運算求解能力.
【解析】設(shè)準(zhǔn)線于軸的焦點為E,圓F的半徑為,
則|FE|=,=,E是BD的中點,
(Ⅰ) ∵,∴=,|BD|=,
設(shè)A(,),根據(jù)拋物線定義得,|FA|=,
∵的面積為,∴===,解得=2,
∴F(0,1), FA|=, ∴圓F的方程為:;
(Ⅱ) 解析1∵,,三點在同一條直線上, ∴是圓的直徑,,
由拋物線定義知,∴,∴的斜率為或-,
∴直線的方程為:,∴原點到直線的距離=,
設(shè)直線的方程為:,代入得,,
∵與只有一個公共點, ∴=,∴,
∴直線的方程為:,∴原點到直線的距離=,
∴坐標(biāo)原點到,距離的比值為3.
解析2由對稱性設(shè),則
點關(guān)于點對稱得:
得:,直線
切點
直線
坐標(biāo)原點到距離的比值為
已知正三角形ABC的頂點A(1,1),B(1,3),頂點C在第一象限,若點(x,y)在△ABC內(nèi)部,則z=-x+y的取值范圍是
(A)(1-,2) (B)(0,2) (C)(-1,2) (D)(0,1+)
【解析】 做出三角形的區(qū)域如圖,由圖象可知當(dāng)直線經(jīng)過點B時,截距最大,此時,當(dāng)直線經(jīng)過點C時,直線截距最小.因為軸,所以,三角形的邊長為2,設(shè),則,解得,,因為頂點C在第一象限,所以,即代入直線得,所以的取值范圍是,選A.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com