[解析]設(shè)△OAB的邊長為.則不妨設(shè).代入.得,同理.設(shè)△OCD的邊長為.可得... 查看更多

 

題目列表(包括答案和解析)

 設(shè)函數(shù),若為函數(shù)的一個極值點,則下列圖象不可能為的圖象是

【答案】D

【解析】設(shè),∴,

又∴的一個極值點,

,即,

,

當(dāng)時,,即對稱軸所在直線方程為;

當(dāng)時,,即對稱軸所在直線方程應(yīng)大于1或小于-1.

 

查看答案和解析>>

如圖,直線與拋物線交于兩點,與軸相交于點,且.

(1)求證:點的坐標(biāo)為;

(2)求證:;

(3)求的面積的最小值.

【解析】設(shè)出點M的坐標(biāo),并把過點M的方程設(shè)出來.為避免對斜率不存在的情況進(jìn)行討論,可以設(shè)其方程為,然后與拋物線方程聯(lián)立消x,根據(jù),即可建立關(guān)于的方程.求出的值.

(2)在第(1)問的基礎(chǔ)上,證明:即可.

(3)先建立面積S關(guān)于m的函數(shù)關(guān)系式,根據(jù)建立即可,然后再考慮利用函數(shù)求最值的方法求最值.

 

查看答案和解析>>

【答案】

【解析】設(shè),有幾何意義知的最小值為, 又因為存在實數(shù)x滿足,所以只要2大于等于f(x)的最小值即可.即2,解得:,所以a的取值范圍是.故答案為:

查看答案和解析>>

設(shè)拋物線>0)的焦點為,準(zhǔn)線為,上一點,已知以為圓心,為半徑的圓,兩點.

(Ⅰ)若,的面積為,求的值及圓的方程;

 (Ⅱ)若,,三點在同一條直線上,直線平行,且只有一個公共點,求坐標(biāo)原點到,距離的比值.

【命題意圖】本題主要考查圓的方程、拋物線的定義、直線與拋物線的位置關(guān)系、點到直線距離公式、線線平行等基礎(chǔ)知識,考查數(shù)形結(jié)合思想和運算求解能力.

【解析】設(shè)準(zhǔn)線軸的焦點為E,圓F的半徑為,

則|FE|==,E是BD的中點,

(Ⅰ) ∵,∴=,|BD|=,

設(shè)A(),根據(jù)拋物線定義得,|FA|=,

的面積為,∴===,解得=2,

∴F(0,1),  FA|=,  ∴圓F的方程為:;

(Ⅱ) 解析1∵,,三點在同一條直線上, ∴是圓的直徑,,

由拋物線定義知,∴,∴的斜率為或-,

∴直線的方程為:,∴原點到直線的距離=,

設(shè)直線的方程為:,代入得,

只有一個公共點, ∴=,∴,

∴直線的方程為:,∴原點到直線的距離=,

∴坐標(biāo)原點到,距離的比值為3.

解析2由對稱性設(shè),則

      點關(guān)于點對稱得:

     得:,直線

     切點

     直線

坐標(biāo)原點到距離的比值為

 

查看答案和解析>>

已知正三角形ABC的頂點A(1,1),B(1,3),頂點C在第一象限,若點(x,y)在△ABC內(nèi)部,則z=-x+y的取值范圍是

(A)(1-,2)     (B)(0,2)     (C)(-1,2)   (D)(0,1+)

【解析】    做出三角形的區(qū)域如圖,由圖象可知當(dāng)直線經(jīng)過點B時,截距最大,此時,當(dāng)直線經(jīng)過點C時,直線截距最小.因為軸,所以,三角形的邊長為2,設(shè),則,解得,因為頂點C在第一象限,所以,即代入直線,所以的取值范圍是,選A.

 

查看答案和解析>>


同步練習(xí)冊答案