已知函數(shù) 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)f(x)=4sin(2x-
π
3
)+1
,給定條件p:
π
4
≤x≤
π
2
,條件q:-2<f(x)-m<2,若p是q的充分條件,則實數(shù)m的取值范圍為
 

查看答案和解析>>

已知函數(shù)f(x)是定義在實數(shù)集R上的不恒為零的偶函數(shù),且對任意實數(shù)x都有xf(x+1)=(1+x)f(x),則f(f(
52
))的值是
 

查看答案和解析>>

已知函數(shù)g(x)=ax2-2ax+1+b(a≠0,b<1),在區(qū)間[2,3]上有最大值4,最小值1,設(shè)f(x)=
g(x)
x

(Ⅰ)求a,b的值;
(Ⅱ)不等式f(2x)-k•2x≥0在x∈[-1,1]上恒成立,求實數(shù)k的范圍;
(Ⅲ)方程f(|2x-1|)+k(
2
|2x-1|
-3)=0
有三個不同的實數(shù)解,求實數(shù)k的范圍.

查看答案和解析>>

8、已知函數(shù)y=f(x)(x∈R)滿足f(x+1)=f(x-1),且x∈[-1,1]時,f(x)=x2,則函數(shù)y=f(x)與y=log5x的圖象的交點個數(shù)為(  )

查看答案和解析>>

已知函數(shù)f(x)=
3-x,x>0
x2-1.x≤0
,則f[f(-2)]=
 

查看答案和解析>>

一、選擇題

1.D   2.A   3.A   4.C    5.D   6.D   7.B   8.A

二、填空題

9.    10.    11.40;    12.7    13.3    14.①②③④

三、解答題

15.解:(1)設(shè)數(shù)列

由題意得:

解得:

   (2)依題

為首項為2,公比為4的等比數(shù)列

   (2)由

 

16.解:(1),

   (2)由

17.解法1:

設(shè)輪船的速度為x千米/小時(x>0),

則航行1公里的時間為小時。

依題意,設(shè)與速度有關(guān)的每小時燃料費用為,

答:輪船的速度應定為每小時20公里,行駛1公里所需的費用總和最小。

解法2:

設(shè)輪船的速度為x千米/小時(x>0),

則航行1公里的時間為小時,

依題意,設(shè)與速度有關(guān)的每小時燃料費用為

元,

且當時等號成立。

答:輪船的速度應定為每小時20公里,行駛1公里所需的費用總和最小。

 

18.解:(1),半徑為1依題設(shè)直線,

    由圓C與l相切得:

   (2)設(shè)線段AB中點為

    代入即為所求的軌跡方程。

   (3)

   

 

       

        ∴異面直線CD與AP所成的角為60°

       (2)連結(jié)AC交BD于G,連結(jié)EG,

       

       (3)設(shè)平面,由

       

    20.解:(1)設(shè)函數(shù)、,

        不妨設(shè)

       

       (2)時,


    同步練習冊答案