題目列表(包括答案和解析)
AB |
|
|
|
|
|
|
n(2n-1) |
A.(幾何證明選講選做題)
如圖,已知AB為圓O的直徑,BC切圓O于點B,AC交圓O于點P,E為線段BC的中點.求證:OP⊥PE.
B.(矩陣與變換選做題)
已知M=,N=,設曲線y=sinx在矩陣MN對應的變換作用下得到曲線F,求F的方程.
C.(坐標系與參數(shù)方程選做題)
在平面直角坐標系xOy中,直線m的參數(shù)方程為(t為參數(shù));在以O為極點、射線Ox為極軸的極坐標系中,曲線C的極坐標方程為ρsinθ=8cosθ.若直線m與曲線C交于A、B兩點,求線段AB的長.
D.(不等式選做題)
設x,y均為正數(shù),且x>y,求證:2x+≥2y+3.
.M={x | x≤},N={1,2,3,4},則(M∩N)=( )
A. {4} B. {3,4} C. {2,3,4} D. {1,2,3,4}
,則
A. B. C.M=N D.以上都錯
A.(幾何證明選講選做題)
|
B.(矩陣與變換選做題) 已知M=,N=,設曲線y=sinx在矩陣MN對應的變換作用下得到曲線F,求F的方程. |
C.(坐標系與參數(shù)方程選做題) 在平面直角坐標系xOy中,直線m的參數(shù)方程為(t為參數(shù));在以O為極點、射線Ox為極軸的極坐標系中,曲線C的極坐標方程為ρsinθ=8cosθ.若直線m與曲線C交于A、B兩點,求線段AB的長. |
D.(不等式選做題) |
一、選擇題:
題號
答案
1、解析:,N=,
即.答案:.
2、解析:由題意得,又.
答案:.
3、解析:程序的運行結(jié)果是.答案:.
4、解析:與直線垂直的切線的斜率必為4,而,所以,切點為.切線為,即,答案:.
5、解析:由一元二次方程有實根的條件,而,由幾何概率得有實根的概率為.答案:.
6、解析:如果兩條平行直線中的一條垂直于一個平面,那么另一條也垂直于這個平面,所以正確;如果兩個平面與同一條直線垂直,則這兩個平面平行,所以正確;
如果一個平面經(jīng)過了另一個平面的一條垂線,則這兩個平面平行,所以也正確;
只有選項錯誤.答案:.
7、解析:由題意,得,答案:.
8、解析:的圖象先向左平移,橫坐標變?yōu)樵瓉淼?sub>倍.答案:.
二、填空題:
題號
答案
9、解析:若,則,解得.
10、解析:由題意.
11、解析:
12、解析:令,則,令,則,
令,則,令,則,
令,則,令,則,
…,所以.
13、解析::;則圓心坐標為.
:由點到直線的距離公式得圓心到直線的距離為,所以要求的最短距離為.
14、解析:由柯西不等式,答案:.
15、解析:顯然與為相似三角形,又,所以的面積等于
三、解答題:本大題共6小題,滿分80分.解答須寫出文字說明、證明過程和演算步驟.
16、解: (Ⅰ), ……………………… 2分
∴,………………………………………………… 4分
解得.………………………………………………………………… 6分
(Ⅱ)由,得:, ……………………… 8分
∴ ………………………………… 10分
∴.…………………………………………………………… 12分
17、解:(1) … 2分
則的最小正周期, …………………………………4分
且當時單調(diào)遞增.
即為的單調(diào)遞增區(qū)間(寫成開區(qū)間不扣分).………6分
(2)當時,當,即時.
所以. …………………………9分
為的對稱軸. …………………12分
18、解:
(Ⅰ)解法一:“有放回摸兩次,顏色不同”指“先白再黑”或“先黑再白”,
記“有放回摸球兩次,兩球恰好顏色不同”為事件,………………………2分
∵“兩球恰好顏色不同”共種可能,…………………………5分
∴. ……………………………………………………7分
解法二:“有放回摸取”可看作獨立重復實驗, …………………………2分
∵每次摸出一球得白球的概率為.………………………………5分
∴“有放回摸兩次,顏色不同”的概率為. ……………………………7分
(Ⅱ)設摸得白球的個數(shù)為,依題意得:
,,.…………10分
∴,……………………………………12分
.……………………14分
19、(Ⅰ)證明: 連結(jié),與交于點,連結(jié).………………………1分
是菱形, ∴是的中點. ………………………………………2分
點為的中點, ∴. …………………………………3分
平面平面, ∴平面. ……………… 6分
(Ⅱ)解法一:
平面,平面,∴ .
,∴. …………………………… 7分
是菱形, ∴.
,
∴平面. …………………………………………………………8分
作,垂足為,連接,則,
所以為二面角的平面角. ………………………………… 10分
,∴,.
在Rt△中,=,…………………………… 12分
∴.…………………………… 13分
∴二面角的正切值是. ………………………… 14分
解法二:如圖,以點為坐標原點,線段的垂直平分線所在直線為軸,所在直線為軸,所在直線為軸,建立空間直角坐標系,令,……………2分
則,,.
∴. ……………4分
設平面的一個法向量為,
由,得,
令,則,∴. …………………7分
平面,平面,
∴. ………………………………… 8分
,∴.
是菱形,∴.
,∴平面.…………………………… 9分
∴是平面的一個法向量,.………………… 10分
∴,
∴, …………………… 12分
∴.…………………………………… 13分
∴二面角的正切值是. ……………………… 14分
20、解:圓的方程為,則其直徑長,圓心為,設的方程為,即,代入拋物線方程得:,設,
有, ………………………………2分
則. ……………………4分
故 …6分
, ………… 7分
因此. ………………………………… 8分
據(jù)等差,, …………… 10分
所以,即,,…………… 12分
即:方程為或. …………………14分
21、解:
(1)因為, …………………………2分
所以,滿足條件. …………………3分
又因為當時,,所以方程有實數(shù)根.
所以函數(shù)是集合M中的元素. …………………………4分
(2)假設方程存在兩個實數(shù)根),
則,……………………………………5分
不妨設,根據(jù)題意存在數(shù)
使得等式成立, ………………………7分
因為,所以,與已知矛盾,
所以方程只有一個實數(shù)根;………………………10分
(3)不妨設,因為
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com