0  1033  1041  1047  1051  1057  1059  1063  1069  1071  1077  1083  1087  1089  1093  1099  1101  1107  1111  1113  1117  1119  1123  1125  1127  1128  1129  1131  1132  1133  1135  1137  1141  1143  1147  1149  1153  1159  1161  1167  1171  1173  1177  1183  1189  1191  1197  1201  1203  1209  1213  1219  1227  447090 

17.(本小題滿(mǎn)分13分)

已知二次函數(shù)的圖像經(jīng)過(guò)坐標(biāo)原點(diǎn),其導(dǎo)函數(shù)為,數(shù)列的前n項(xiàng)和為,點(diǎn)均在函數(shù)的圖像上。

(Ⅰ)、求數(shù)列的通項(xiàng)公式;

(Ⅱ)、設(shè),是數(shù)列的前n項(xiàng)和,求使得對(duì)所有都成立的最小正整數(shù)m;

點(diǎn)評(píng):本小題考查二次函數(shù)、等差數(shù)列、數(shù)列求和、不等式等基礎(chǔ)知識(shí)和基本的運(yùn)算技能,考查分析問(wèn)題的能力和推理能力。

解:(Ⅰ)設(shè)這二次函數(shù)f(x)=ax2+bx (a≠0) ,則 f`(x)=2ax+b,由于f`(x)=6x-2,得

a=3 ,  b=-2, 所以  f(x)=3x2-2x.

又因?yàn)辄c(diǎn)均在函數(shù)的圖像上,所以=3n2-2n.

試題詳情

16.(本小題滿(mǎn)分12分)

設(shè)函數(shù),其中向量,,,。

(Ⅰ)、求函數(shù)的最大值和最小正周期;

(Ⅱ)、將函數(shù)的圖像按向量平移,使平移后得到的圖像關(guān)于坐標(biāo)原點(diǎn)成中心對(duì)稱(chēng),求長(zhǎng)度最小的。

   點(diǎn)評(píng):本小題主要考查平面向量數(shù)量積的計(jì)算方法、三角公式、三角函數(shù)的性質(zhì)及圖像的基本知識(shí),考查推理和運(yùn)算能力。

   解:(Ⅰ)由題意得,f(x)=a?(b+c)=(sinx,-cosx)?(sinx-cosx,sinx-3cosx)

               =sin2x-2sinxcosx+3cos2x=2+cos2x-sin2x=2+sin(2x+).

所以,f(x)的最大值為2+,最小正周期是=.

(Ⅱ)由sin(2x+)=0得2x+=k.,即x=,k∈Z,

于是d=(,-2),k∈Z.

因?yàn)閗為整數(shù),要使最小,則只有k=1,此時(shí)d=(?,?2)即為所求.

試題詳情

15.將楊輝三角中的每一個(gè)數(shù)都換成,就得到一個(gè)如下圖所示的分?jǐn)?shù)三角形,成為萊布尼茨三角形,從萊布尼茨三角形可看出,其中   r1  。令,則

    

解:第一個(gè)空通過(guò)觀(guān)察可得。

=(1+-1)+()+(+-)+(+-)+…+(+-)+(+-)

=(1+++…+)+(++++…+)-2(++…+)

=〔(1+++…+)-(++…+)〕+〔(++++…+)

-(++…+)〕=1-+-=+-

所以

試題詳情

14.某工程隊(duì)有6項(xiàng)工程需要單獨(dú)完成,其中工程乙必須在工程甲完成后才能進(jìn)行,工程丙必須在工程乙完成后才能進(jìn)行,有工程丁必須在工程丙完成后立即進(jìn)行。那么安排這6項(xiàng)工程的不同排法種數(shù)是 20   。(用數(shù)字作答)

解:依題意,只需將剩余兩個(gè)工程插在由甲、乙、丙、丁四個(gè)工程形成的5個(gè)空中,可得有=20種不同排法。

試題詳情

13.已知直線(xiàn)與圓相切,則的值為 188 。

解:圓的方程可化為,所以圓心坐標(biāo)為(1,0),半徑為1,由已知可得

,所以的值為-18或8。

試題詳情

解:P==0.94

試題詳情

12.接種某疫苗后,出現(xiàn)發(fā)熱反應(yīng)的概率為0.80,現(xiàn)有5人接種了該疫苗,至少有3人出現(xiàn)發(fā)熱反應(yīng)的概率為  0.94    。(精確到0.01)

試題詳情

11.設(shè)為實(shí)數(shù),且,則  4        

解:,

而 所以,解得x=-1,y=5,

所以x+y=4。

試題詳情

第Ⅱ卷用0.5毫米黑色的簽字筆或黑色墨水鋼筆直接答在答題卡上。答在試題卷上無(wú)效。

試題詳情

10.關(guān)于的方程,給出下列四個(gè)命題:    ( A )

①存在實(shí)數(shù),使得方程恰有2個(gè)不同的實(shí)根;

②存在實(shí)數(shù),使得方程恰有4個(gè)不同的實(shí)根;

③存在實(shí)數(shù),使得方程恰有5個(gè)不同的實(shí)根;

④存在實(shí)數(shù),使得方程恰有8個(gè)不同的實(shí)根;

其中命題的個(gè)數(shù)是

A.0    B.1    C.2    D.3

解:關(guān)于x的方程可化為…………(1)

或(-1<x<1)…………(2)

①     當(dāng)k=-2時(shí),方程(1)的解為±,方程(2)無(wú)解,原方程恰有2個(gè)不同的實(shí)根

②     當(dāng)k=時(shí),方程(1)有兩個(gè)不同的實(shí)根±,方程(2)有兩個(gè)不同的實(shí)根±,即原方程恰有4個(gè)不同的實(shí)根

③     當(dāng)k=0時(shí),方程(1)的解為-1,+1,±,方程(2)的解為x=0,原方程恰有5個(gè)不同的實(shí)根

④     當(dāng)k=時(shí),方程(1)的解為±,±,方程(2)的解為±,±,即原方程恰有8個(gè)不同的實(shí)根

選A

第Ⅱ卷(非選擇題   共100分)

注意事項(xiàng):

試題詳情


同步練習(xí)冊(cè)答案