5.--- Didn’t you have a good time at the party?
---- Of course I did.As a matter of fact, I had such fun that time seemed to _____ so quickly.
A.go by B.go away C.go out D.go over
4.When he came to,he found himself _____ by a group of villagers.
A.surrounding B.being surrounded
C.surrounded D.surround
3._____ you have bought!
A.What a fine piece of furniture B.How fine furniture
C.what a fine furniture D.How beautiful a furniture
2.His words surprised everyone.I couldn’t _____ so.
A.imagine his saying B.think him saying
C.imagine him to say D.consider him saying
第一節(jié):單項(xiàng)填空(共35小題;每小題1分,滿分35分)
從A、B、C、D四個(gè)選項(xiàng)中,選出可以填人空白處的最佳選項(xiàng),并在答題卡上將該項(xiàng)涂黑。
1.---I don’t believe it’s good to hang the drawing here.
---- _______ I move it over there? Do you think it will look better?
A.What about B.What if C.How about D.What with
15.在(2x-3y)10的展開式中,求:
(1)二項(xiàng)式系數(shù)的和;
(2)各項(xiàng)系數(shù)的和;
(3)奇數(shù)項(xiàng)的二項(xiàng)式系數(shù)和與偶數(shù)項(xiàng)的二項(xiàng)式系數(shù)和;
(4)奇數(shù)項(xiàng)系數(shù)和與偶數(shù)項(xiàng)系數(shù)和;
(5)x的奇次項(xiàng)系數(shù)和與x的偶次項(xiàng)系數(shù)和.
解:設(shè)(2x-3y)10=a0x10+a1x9y+a2x8y2+…+a10y10(*)
各項(xiàng)系數(shù)和即為a0+a1+…+a10,奇數(shù)項(xiàng)系數(shù)和為a0+a2+…+a10,偶數(shù)項(xiàng)系數(shù)和為a1+a3+a5+…+a9,x的奇次項(xiàng)系數(shù)和為a1+a3+a5+…+a9,x的偶次項(xiàng)系數(shù)和a0+a2+a4+…+a10.
由于(*)是恒等式,故可用“賦值法”求出相關(guān)的系數(shù)和.
(1)二項(xiàng)式系數(shù)和為C+C+…+C=210,
(2)令x=y=1,各項(xiàng)系數(shù)和為(2-3)10=(-1)10=1.
(3)奇數(shù)項(xiàng)的二項(xiàng)式系數(shù)和為C+C+…+C=29.
偶數(shù)項(xiàng)的二項(xiàng)式系數(shù)和為C+C+…+C=29.
(4)設(shè)(2x-3y)10=a0x10+a1x9y+a2x8y2+…+a10y10
令x=y=1,得到a0+a1+a2+…+a10=1①
令x=1,y=-1(或x=-1,y=1)
得a0-a1+a2-a3+…+a10=510②
①+②得2(a0+a2+…+a10)=1+510,
∴奇數(shù)項(xiàng)的系數(shù)和為;
①-②得2(a1+a3+…+a9)=1-510,
∴偶數(shù)項(xiàng)的系數(shù)和為.
(5)x的奇次項(xiàng)系數(shù)和為a1+a3+a5+…+a9=;
x的偶次項(xiàng)系數(shù)和為a0+a2+a4+…+a10=.
14.(1)求(x2-)9的展開式中的常數(shù)項(xiàng);
(2)已知(-)9的展開式中x3的系數(shù)為,求常數(shù)a的值;
(3)求(x2+3x+2)5的展開式中含x的項(xiàng).
解:(1)設(shè)第r+1項(xiàng)為常數(shù)項(xiàng),則
Tr+1=C(x2)9-r·(-)r=(-)rCx18-3r
令18-3r=0,得r=6,即第7項(xiàng)為常數(shù)項(xiàng).
T7=(-)6C=.
∴常數(shù)項(xiàng)為.
(2)設(shè)第r+1項(xiàng)是含x3的項(xiàng),則有
C()9-r(-)r=x3,得:xr-9x=x3,
故r-9=3,即r=8.
∴Ca(-)8=,∴a=4.
(3)∵(x2+3x+2)5=(x+1)5(x+2)5,
(x2+3x+2)5的展開式中含x的項(xiàng)是(x+1)5展開式中的一次項(xiàng)與(x+2)5展開式中的常數(shù)項(xiàng)之積,(x+1)5展開式中的常數(shù)項(xiàng)與(x+2)5展開式中的一次項(xiàng)之積的代數(shù)和.
∴含x的項(xiàng)為C·x·C·25+C·1·C·x·24=240x.
13.已知(+3x2)n展開式中各項(xiàng)的系數(shù)和比各項(xiàng)的二項(xiàng)式系數(shù)和大992.求展開式中系數(shù)最大的項(xiàng).
解:令x=1,得各項(xiàng)的系數(shù)和為(1+3)n=4n,
而各項(xiàng)的二項(xiàng)式系數(shù)和為:
C+C+…+C=2n,∴4n=2n+992.
∴(2n-32)(2n+31)=0
∴2n=32或2n=-31(舍去),∴n=5
設(shè)第r+1項(xiàng)的系數(shù)最大,則
即
∴≤r≤,又r∈Z,∴r=4,
∴系數(shù)最大的項(xiàng)是T5=Cx(3x2)4=405x.
12.已知n(n∈N*)的展開式中第5項(xiàng)的系數(shù)與第3項(xiàng)的系數(shù)之比為10∶1.求展開式中系數(shù)最大的是第幾項(xiàng)?
解:依題意,第5項(xiàng)的系數(shù)為C·24,
第3項(xiàng)的系數(shù)為C·22,則有
=,解得n=8.
設(shè)展開式中第r+1項(xiàng)的系數(shù)最大,則
解得5≤r≤6.
∴第6項(xiàng)和第7項(xiàng)的系數(shù)相等且最大,
即最大為56×25=7×28=1792.
11.(2008·廣東)已知(1+kx2)6(k是正整數(shù))的展開式中,x8的系數(shù)小于120,則k=________.
答案:1
解析:∵x8的系數(shù)為Ck4,由Ck4<120得k4<8,而k∈N+,∴k=1.故填1.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com