0  443272  443280  443286  443290  443296  443298  443302  443308  443310  443316  443322  443326  443328  443332  443338  443340  443346  443350  443352  443356  443358  443362  443364  443366  443367  443368  443370  443371  443372  443374  443376  443380  443382  443386  443388  443392  443398  443400  443406  443410  443412  443416  443422  443428  443430  443436  443440  443442  443448  443452  443458  443466  447090 

5. 句子翻譯

1) 他指出酒后駕車的危險性。(point)

2) 很高興認識你。(pleasure)

3) 一切都嚴格按計劃進行。(plan)

4) 座位下面放置了一枚炸彈。(place)

5) 圖書館內(nèi)部允許使用手機(permit)

6)電腦能同時做許多任務(wù)。(perform)

7)這兩張火車票花了我800元。(pay)

8)我沒有耐心與小孩一起玩游戲。(patience)

9)他尤其喜歡科幻小說。(particular)

10)他對這起事故負有部分責(zé)任。(partly)

高三英語核心詞匯復(fù)習(xí)第18課時

(poisonous --- push)

試題詳情

4. 選詞填空

period  phrases  pity  pass  passage  parcel  park  pattern  pause  perform

This morning a ________ was delivered by post; the children couldn’t wait to open it.

There were so many cars; we couldn’t find a place to _________.

--- I’m taking my driving test today.   --- Do you think you’ll _________.

We walked down a narrow ________ to the back of the building.

Police say that each of the murders follows the same ________.

The traveler ______ for breath, then continued up the hill.

She still gets very nervous about ______ in public.

His playing improved in a very short _______ of time.

I’m trying to learn some French ____ for my trip to Paris.

It’s a great ______ Tom wasn’t invited. We all like him.

試題詳情

3.單項選擇

--- What’s the secret of their success? 

--- They’ve certainly worked very hard, but luck has played a _________ too.

A. part   B. path  C. pay   D. point

In the general election, ___________ voted.

A. 80% percent population  B. 80% percent of the population 

C. 80 percent f the population  D. 80 percentage of the population

3) --- How is your party preparation?  --- Everything is __________.

  A. in particular   B. in place   C. in person  D. in panic

4) Everyone in the class is expected to ______ these discussions.

  A. active in    B. take an active part 

C. participate actively in   D. play an active role

5) I could tell him, but what’s the ________? He never listens to anyone.

  A. piece   B. plot  C. plan  D. point

6) She’s hard to __________. Everything has to be perfect

  A. please   B. pleased  C. pleasure  D. pleasant

7) I ________ a few words of Greek when I was there last year.

  A. pointed to   B. picked up   C. pointed out  D. picked out

8) We’ll have a picnic at the beach, ___________.

  A. weather permits   B. if weather permit 

  C. weather permitting   D. to permit weather

9) This is a general criticism (批評), so I hope none of you will take it _________.

  A. physical   B. personal   C. physically   D. personally

10) I _______ Ann to say sorry to her teacher, but she said no.

  A. persuaded  B. had persuaded  C. managed to persuade  D. tried to persuade

試題詳情

2. 介詞填空

I met him _________ a party a couple of months ago.

John is not particular ________ his food and he eats whatever his wife cooks.

Teachers have to be very patient _________ young students.

The soldier wanted to find a quiet place and spent the rest of his life __________ peace.

Stop playing _______ the sharp knife! It might cut your fingers.

Pages should not be copied _______-- the permission of the publisher.

Pardon me _________ saying so, but you don’t look well.

I didn’t spend a lot of time on the book and I read it just ________ pleasure.

At college I took an active part ______ student politics.

Don’t let yourself be persuaded ______ buying things you don’t want.

試題詳情

1. 單詞拼寫

1) Buckingham P_____________ is the official house of the British Royal Family in London.

2) A p______________ looks like a black and white bear and lives in the mountains of China.

3) The professor told the p_______________ how to make friends with their children.

4) Fortunately, neither the driver nor the p______________ were hurt in the car crash.

5) All people entering another country will need a p___________.

6) Our car ran out of p___________ and we had to walk 10 miles to a garage to buy some.

7) I’m so tired that I’ll be asleep as soon as my head hits the p___________.

8) As with any racial p_______________ (先驅(qū)), Davis’ path was not easy.

9) Do you believe that there is life on other p_____________ in the universe besides Earth?

10) She stood on the p___________ and watched the train until it disappeared into the distance.

試題詳情

4.在應(yīng)用題背景條件下,能否把一個復(fù)雜事件分解為若干個互相排斥或相互獨立、既不重復(fù)又不遺漏的簡單事件是解答這類應(yīng)用題的關(guān)鍵,也是考查學(xué)生分析問題、解決問題的能力的重要環(huán)節(jié)。

試題詳情

3.對立事件是互斥事件的一種特殊情況,是指在一次試驗中有且僅有一個發(fā)生的兩個事件,集合A的對立事件記作,從集合的角度來看,事件所含結(jié)果的集合正是全集U中由事件A所含結(jié)果組成集合的補集,即A=U,A=.對立事件一定是互斥事件,但互斥事件不一定是對立事件。

事件A、B的和記作A+B,表示事件A、B至少有一個發(fā)生。當AB為互斥事件時,事件A+B是由“A發(fā)生而B不發(fā)生”以及“B發(fā)生而A不發(fā)生”構(gòu)成的。

當計算事件A的概率P(A)比較困難時,有時計算它的對立事件的概率則要容易些,為此有P(A)=1-P()。

對于n個互斥事件A1,A2,…,An,其加法公式為P(A1+A2+…+An)=P(A1)+P(A2)+…+P(An)。

分類討論思想是解決互斥事件有一個發(fā)生的概率的一個重要的指導(dǎo)思想。

試題詳情

2.對于互斥事件要抓住如下的特征進行理解:

第一,互斥事件研究的是兩個事件之間的關(guān)系;

第二,所研究的兩個事件是在一次試驗中涉及的;

第三,兩個事件互斥是從試驗的結(jié)果不能同時出現(xiàn)來確定的。

試題詳情

本講概念性強、抽象性強、思維方法獨特。因此要立足于基礎(chǔ)知識、基本方法、基本問題的練習(xí),恰當選取典型例題,構(gòu)建思維模式,造就思維依托和思維的合理定勢。

1.使用公式P(A)=計算時,確定mn的數(shù)值是關(guān)鍵所在,其計算方法靈活多變,沒有固定的模式,可充分利用排列組合知識中的分類計數(shù)原理和分步計數(shù)原理,必須做到不重復(fù)不遺漏。

復(fù)習(xí)這部分內(nèi)容及解答此類問題首先必須使學(xué)生明確判斷兩點:(1)對于每個隨機實驗來說,所有可能出現(xiàn)的實驗結(jié)果數(shù)n必須是有限個;(2)出現(xiàn)的所有不同的實驗結(jié)果數(shù)m其可能性大小必須是相同的。只有在同時滿足(1)、(2)的條件下,運用的古典概型計算公式P(A)=m/n得出的結(jié)果才是正確的。

試題詳情

題型1:隨機事件的定義

例1.判斷下列事件哪些是必然事件,哪些是不可能事件,哪些是隨機事件?

(1)“拋一石塊,下落”.

(2)“在標準大氣壓下且溫度低于0℃時,冰融化”;

(3)“某人射擊一次,中靶”;

(4)“如果ab,那么ab>0”;

(5)“擲一枚硬幣,出現(xiàn)正面”;

(6)“導(dǎo)體通電后,發(fā)熱”;

(7)“從分別標有號數(shù)1,2,3,4,5的5張標簽中任取一張,得到4號簽”;

(8)“某電話機在1分鐘內(nèi)收到2次呼叫”;

(9)“沒有水份,種子能發(fā)芽”;

(10)“在常溫下,焊錫熔化”.

解析:根據(jù)定義,事件(1)、(4)、(6)是必然事件;事件(2)、(9)、(10)是不可能事件;事件(3)、(5)、(7)、(8)是隨機事件。

點評:熟悉必然事件、不可能事件、隨機事件的聯(lián)系與區(qū)別。針對不同的問題加以區(qū)分。

例2.(1)如果某種彩票中獎的概率為,那么買1000張彩票一定能中獎嗎?請用概率的意義解釋。

解析:不一定能中獎,因為,買1000張彩票相當于做1000次試驗,因為每次試驗的結(jié)果都是隨機的,即每張彩票可能中獎也可能不中獎,因此,1000張彩票中可能沒有一張中獎,也可能有一張、兩張乃至多張中獎。

點評:買1000張彩票,相當于1000次試驗,因為每次試驗的結(jié)果都是隨機的,所以做1000次試驗的結(jié)果也是隨機的,也就是說,買1000張彩票有可能沒有一張中獎。

(2)在一場乒乓球比賽前,裁判員利用抽簽器來決定由誰先發(fā)球,請用概率的知識解釋其公平性。

解析:這個規(guī)則是公平的,因為抽簽上拋后,紅圈朝上與綠圈朝上的概率均是0.5,因此任何一名運動員猜中的概率都是0.5,也就是每個運動員取得先發(fā)球權(quán)的概率都是0.5。

點評:這個規(guī)則是公平的,因為每個運動員先發(fā)球的概率為0.5,即每個運動員取得先發(fā)球權(quán)的概率是0.5。事實上,只能使兩個運動員取得先發(fā)球權(quán)的概率都是0.5的規(guī)則都是公平的。

題型2:頻率與概率

例3.某種菜籽在相同在相同的條件下發(fā)芽試驗結(jié)果如下表:(求其發(fā)芽的概率)

種子粒數(shù)
2
5
10
70
130
310
700
1500
2000
3000
發(fā)芽粒數(shù)
2
4
9
60
116
282
639
1339
1806
2715

解析:我們根據(jù)表格只能計算不同情況下的種子發(fā)芽的頻率分別是:1,0.8,0.9,0.857,0.892,0.910,0.913,0.893,0.903,0.905。隨著種子粒數(shù)的增加,菜籽發(fā)芽的頻率越接近于0.9,且在它附近擺動。故此種子發(fā)芽的概率為0.9。

點評:我們可以用頻率的趨向近似值表示隨機事件發(fā)生的概率。

例4.進行這樣的試驗:從0、1、2、…、9這十個數(shù)字中隨機取一個數(shù)字,重復(fù)進行這個試驗10000次,將每次取得的數(shù)字依次記下來,我們就得到一個包括10000個數(shù)字的“隨機數(shù)表”.在這個隨機數(shù)表里,可以發(fā)現(xiàn)0、1、2、…、9這十個數(shù)字中各個數(shù)字出現(xiàn)的頻率穩(wěn)定在0.1附近.現(xiàn)在我們把一個隨機數(shù)表等分為10段,每段包括1000個隨機數(shù),統(tǒng)計每1000個隨機數(shù)中數(shù)字“7”出現(xiàn)的頻率,得到如下的結(jié)果:

段序:n=1000
1
2
3
4
5
6
7
8
9
10
出現(xiàn)“7”的頻數(shù)
95
88
95
112
95
99
82
89
111
102
出現(xiàn)“7”的頻率
0.095
0.088
0.095
0.112
0.095
0.099
0.082
0.089
0.111
0.102

由上表可見,每1000個隨機數(shù)中“7”出現(xiàn)的頻率也穩(wěn)定在0.1的附近.這就是頻率的穩(wěn)定性.我們把隨機事件A的頻率P(A)作為隨機事件A的概率P(A)的近似值。

點評:利用概率的統(tǒng)計定義,在計算每一個隨機事件概率時都要通過大量重復(fù)的試驗,列出一個表格,從表格中找到某事件出現(xiàn)頻率的近似值作為所求概率。這從某種意義上說是很繁瑣的。

題型3:隨機事件間的關(guān)系

例5.(1)某戰(zhàn)士在打靶中,連續(xù)射擊兩次,事件“至少有一次中靶”的對立事件是(  )

    (A)至多有一次中靶               (B)兩次都中靶

    (C)兩次都不中靶                 (D)只有一次中靶

答案:C。

點評:根據(jù)實際問題分析好對立事件與互斥事件間的關(guān)系。

(2)把標號為1,2,3,4的四個小球隨機地分發(fā)給甲、乙、丙、丁四個人,每人分得一個。事件“甲分得1號球”與事件“乙分得1號球”是(  )

    (A)互斥但非對立事件              (B)對立事件

(C)相互獨立事件             (D)以上都不對

答案:A。

點評:一定要區(qū)分開對立和互斥的定義,互斥事件:不能同時發(fā)生的兩個事件叫做互斥事件;對立事件:不能同時發(fā)生,但必有一個發(fā)生的兩個事件叫做互斥事件。

例6.(2006天津文,18)甲、乙兩臺機床相互沒有影響地生產(chǎn)某種產(chǎn)品,甲機床產(chǎn)品的正品率是乙機床產(chǎn)品的正品率是。

    (I)從甲機床生產(chǎn)的產(chǎn)品中任取3件,求其中恰有2件正品的概率(用數(shù)字作答);

(II)從甲、乙兩臺機床生產(chǎn)的產(chǎn)品中各任取1件,求其中至少有1件正品的概率(用數(shù)字作答)。

(I)解:任取甲機床的3件產(chǎn)品恰有2件正品的概率為

   

    (II)解法一:記“任取甲機床的1件產(chǎn)品是正品”為事件A,“任取乙機床的1件產(chǎn)品是正品”為事件B。則任取甲、乙兩臺機床的產(chǎn)品各1件,其中至少有1件正品的概率為:

    解法二:運用對立事件的概率公式,所求的概率為:

點評:本小題考查互斥事件、相互獨立事件的概率等基礎(chǔ)知識,及分析和解決實際問題的能力。

題型4:古典概率模型的計算問題

例7.從含有兩件正品a1,a2和一件次品b1的三件產(chǎn)品中,每次任取一件,每次取出后不放回,連續(xù)取兩次,求取出的兩件產(chǎn)品中恰有一件次品的概率。

解析:每次取出一個,取后不放回地連續(xù)取兩次,其一切可能的結(jié)果組成的基本事件有6個,即(a1,a2)和,(a1,b2),(a2,a1),(a2,b1),(b1,a1),(b2,a2)。其中小括號內(nèi)左邊的字母表示第1次取出的產(chǎn)品,右邊的字母表示第2次取出的產(chǎn)用A表示“取出的兩種中,恰好有一件次品”這一事件,

則A=[(a1,b1),(a2,b1),(b1,a1),(b1,a2)],

事件A由4個基本事件組成,因而,P(A)==

點評:利用古典概型的計算公式時應(yīng)注意兩點:(1)所有的基本事件必須是互斥的;(2)m為事件A所包含的基本事件數(shù),求m值時,要做到不重不漏。

例8.現(xiàn)有一批產(chǎn)品共有10件,其中8件為正品,2件為次品:

(1)如果從中取出一件,然后放回,再取一件,求連續(xù)3次取出的都是正品的概率;

(2)如果從中一次取3件,求3件都是正品的概率。

分析:(1)為返回抽樣;(2)為不返回抽樣。

解析:(1)有放回地抽取3次,按抽取順序(x,y,z)記錄結(jié)果,則x,y,z都有10種可能,所以試驗結(jié)果有10×10×10=103種;設(shè)事件A為“連續(xù)3次都取正品”,則包含的基本事件共有8×8×8=83種,因此,P(A)= =0.512。

(2)解法1:可以看作不放回抽樣3次,順序不同,基本事件不同,按抽取順序記錄(x,y,z),則x有10種可能,y有9種可能,z有8種可能,所以試驗的所有結(jié)果為10×9×8=720種.設(shè)事件B為“3件都是正品”,則事件B包含的基本事件總數(shù)為8×7×6=336, 所以P(B)= ≈0.467。

解法2:可以看作不放回3次無順序抽樣,先按抽取順序(x,y,z)記錄結(jié)果,則x有10種可能,y有9種可能,z有8種可能,但(x,y,z),(x,z,y),(y,x,z),(y,z,x),(z,x,y),(z,y,x),是相同的,所以試驗的所有結(jié)果有10×9×8÷6=120,按同樣的方法,事件B包含的基本事件個數(shù)為8×7×6÷6=56,因此P(B)= ≈0.467。

點評:關(guān)于不放回抽樣,計算基本事件個數(shù)時,既可以看作是有順序的,也可以看作是無順序的,其結(jié)果是一樣的,但不論選擇哪一種方式,觀察的角度必須一致,否則會導(dǎo)致錯誤。

題型5:利用排列組合知識解古典概型問題

例9.(2006山東文,19)盒中裝著標有數(shù)字1,2,3,4的卡片各2張,從盒中任意任取3張,每張卡片被抽出的可能性都相等,求:

(Ⅰ)抽出的3張卡片上最大的數(shù)字是4的概率;

(Ⅱ)抽出的3張中有2張卡片上的數(shù)字是3的概念;

(Ⅲ)抽出的3張卡片上的數(shù)字互不相同的概率。

解析:(I)“抽出的3張卡片上最大的數(shù)字是4”的事件記為A,

由題意得:;

(II)“抽出的3張中有2張卡片上的數(shù)字是3”的事件記為B,

;

(III)“抽出的3張卡片上的數(shù)字互不相同”的事件記為C,“抽出的3張卡片上有兩個數(shù)字相同”的事件記為D,由題意,C與D是對立事件,

因為,

所以.

點評:該題通過排列、組合知識完成了古典概型的計算問題,同時要做到所有的基本事件必須是互斥的,要做到不重不漏。

例10.(2006安徽文,19)在添加劑的搭配使用中,為了找到最佳的搭配方案,需要對各種不同的搭配方式作比較。在試制某種牙膏新品種時,需要選用兩種不同的添加劑,F(xiàn)有芳香度分別為0,1,2,3,4,5的六種添加劑可供選用。根據(jù)試驗設(shè)計原理,通常首先要隨機選取兩種不同的添加劑進行搭配試驗。

(Ⅰ)求所選用的兩種不同的添加劑的芳香度之和等于4的概率;

(Ⅱ)求所選用的兩種不同的添加劑的芳香度之和不小于3的概率;

解析:設(shè)“所選用的兩種不同的添加劑的芳香度之和等于4”的事件為A,“所選用的兩種不同的添加劑的芳香度之和不小于3”的事件為B

(Ⅰ)芳香度之和等于4的取法有2種:,故

(Ⅱ)芳香度之和等于1的取法有1種:;芳香度之和等于2的取法有1種:,故。

點評:高考對概率內(nèi)容的考查,往往以實際應(yīng)用題出現(xiàn)。這既是這類問題的特點,也符合高考發(fā)展方向,考生要以課本概念和方法為主,以熟練技能,鞏固概念為目標,查找知識缺漏,總結(jié)解題規(guī)律。

題型6:易錯題辨析

例11.擲兩枚骰子,求所得的點數(shù)之和為6的概率。

錯解:擲兩枚骰子出現(xiàn)的點數(shù)之和不同情況為{2,3,4,…,12},故共有11種基本事件,所以概率為P=;

剖析:以上11種基本事件不是等可能的,如點數(shù)和2只有(1,1),而點數(shù)之和為6有(1,5)、(2,4)、(3,3)、(4,2)、(5,1)共5種.事實上,擲兩枚骰子共有36種基本事件,且是等可能的,所以“所得點數(shù)之和為6”的概率為P=。

我們經(jīng)常見的錯里還有“投擲兩枚硬幣的結(jié)果”,劃分基本事件“兩正、一正一反、兩反”,其中“一正一反”與“兩正”、“兩反”的機會是不均等。

類型四:基本事件 “不可數(shù)”

由概率求值公式,求某一事件發(fā)生的概率時,要求試驗中所有可能出現(xiàn)的基本事件只有有限個。

如果試驗所包含的基本事件是無限多個,那根本就不會得到基本事件的總數(shù),也就不能用公式來解決問題。

例12.(2000年天津、山西、江西高考試題)

甲、乙二人參加普法知識競賽,共有10個不同的題目,其中選擇題6個,判斷題4個,甲、乙二人一次各抽取一題,

(1)甲抽到選擇題,乙抽到判斷題的概率是多少?

錯解:甲從選擇題中抽到一題的可能結(jié)果有個,乙從判斷題中抽到一題的的可能結(jié)果是,故甲抽到選擇題,乙抽到判斷題的可能結(jié)果為;又甲、乙二人一次各抽取一題的結(jié)果有,所以概率值為

剖析:錯把分步原理當作分類原理來處理。

正解:甲從選擇題中抽到一題的可能結(jié)果有個,乙從判斷題中抽到一題的的可能結(jié)果是,故甲抽到選擇題,乙抽到判斷題的可能結(jié)果為;又甲、乙二人一次各抽取一題的結(jié)果有,所以概率值為

(2)甲、乙二人至少有一個抽到選擇題的概率是多少?

錯解:甲、乙中甲抽到判斷題的種數(shù)是6×9種,乙抽到判斷題的種數(shù)6×9種,故甲、乙二人至少有一個抽到選擇題的種數(shù)為12×9;又甲、乙二人一次各抽取一題的種數(shù)是10×9,故甲、乙二人至少有一個抽到選擇題的概率是

剖析:顯然概率值不會大于1,這是錯解。該問題對甲、乙二人至少有一個抽到選擇題的計數(shù)是重復(fù)的,兩人都抽取到選擇題這種情況被重復(fù)計數(shù)。

正解:甲、乙二人一次各抽取一題基本事件的總數(shù)是10×9=90;

方法一:分類計數(shù)原理

(1)只有甲抽到了選擇題的事件數(shù)是:6×4=24;

(2)只有乙抽到了選擇題的事件數(shù)是:6×4=24;

(3)甲、乙同時抽到選擇題的事件數(shù)是:6×5=30;

故甲、乙二人至少有一個抽到選擇題的概率是。

方法二:利用對立事件

事件“甲、乙二人至少有一個抽到選擇題”與事件“甲、乙兩人都未抽到選擇題”是對立事件。

事件“甲、乙兩人都未抽到選擇題”的基本事件個數(shù)是4×3=12;

故甲、乙二人至少有一個抽到選擇題的概率是。

試題詳情


同步練習(xí)冊答案