脫式計(jì)算
①9028-(4028+523)-477  
②8
7
8
-[8-(2.125-0.125÷
1
8
)]
③3
1
8
÷[(4
5
12
-3
13
24
)×
4
7
+(3
1
18
-2
7
12
)×1
10
17
]
④(1-
1
2×2
)(1-
1
3×3
)(1-
1
4×4
)…(1-
1
2001×2001
分析:算式一可據(jù)交換律及結(jié)合律進(jìn)行簡算;算式二可先將式中小數(shù)化為分?jǐn)?shù)后再簡算;算式三據(jù)四則混合運(yùn)算法則計(jì)算即可;算式四可將原式化為
1×3
2×2
×
2×4
3×3
×
3×5
4×4
×…×
1999×2001
2000×2000
×
2000×2002
2001×2001
進(jìn)行簡算.
解答:解:(1)9028-(4028+523)-477
=(9028-4028)-(523+477),
=5000-1000,
=4000;

(2)8
7
8
-[8-(2.125-0.125÷
1
8
)]
=8
7
8
-
[8-(2
1
8
-
1
8
÷
1
8
)],
=8
7
8
-
[8-(2
1
8
-1)],
=8
7
8
-
[8-1
1
8
],
=8
7
8
+1
1
8
-8,
=10-8
=2;

(3)3
1
8
÷[(4
5
12
-3
13
24
)×
4
7
+(3
1
18
-2
7
12
)×1
10
17
]
=
25
8
÷[(
53
12
-
85
24
)×
4
7
+(
55
18
-
31
12
)×
27
17
],
=
25
8
÷[
21
24
×
4
7
+
17
36
×
27
17
],
=
25
8
÷[
1
2
+
3
4
],
=
25
8
×
4
5
,
=
5
2


(4)(1-
1
2×2
)(1-
1
3×3
)(1-
1
4×4
)…(1-
1
2001×2001

=
1×3
2×2
×
2×4
3×3
×
3×5
4×4
×…×
1999×2001
2000×2000
×
2000×2002
2001×2001
,
=
1
2
×
2002
2001
,
=
1001
2001
點(diǎn)評:本題中數(shù)據(jù)較多,首先要細(xì)心,同時(shí)要認(rèn)真分析式中數(shù)據(jù),找出合適的簡算方法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:小學(xué)數(shù)學(xué) 來源: 題型:解答題

脫式計(jì)算
①9028-(4028+523)-477  
②8數(shù)學(xué)公式-[8-(2.125-0.125÷數(shù)學(xué)公式)]
③3數(shù)學(xué)公式÷[(4數(shù)學(xué)公式-3數(shù)學(xué)公式)×數(shù)學(xué)公式+(3數(shù)學(xué)公式-2數(shù)學(xué)公式)×1數(shù)學(xué)公式]
④(1-數(shù)學(xué)公式)(1-數(shù)學(xué)公式)(1-數(shù)學(xué)公式)…(1-數(shù)學(xué)公式

查看答案和解析>>

同步練習(xí)冊答案