如圖,AD、BE、CF分別是三角形ABC三條邊上的高,與AC對應(yīng)的高是CF.
×
×
.(判斷對錯)
分析:銳角三角形的三條高都在三角形內(nèi),直角三形的一條直角邊是以另一直角邊為底的高,斜邊上的高也在三角形內(nèi),鈍角三只有以是長邊為底的高在三角形內(nèi),另外兩條高都在底的延長線上作出.
解答:解:如圖,

AD、BE、CF分別是三角形ABC三條邊上的高,與AC對應(yīng)的高是BE.
故答案為:×.
點評:本題主要是考查三角形高意義,注意,三角形的三條高是對一定的底而言的,所作的高垂直于哪條邊,高就是以那條邊為底的高.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:小學(xué)數(shù)學(xué) 來源: 題型:

如圖所示,已知AD=CE,AD和BE平行,F(xiàn)是CD和AE的中點,則梯形ABCD的面積
(  )三角形ABE的面積.

查看答案和解析>>

科目:小學(xué)數(shù)學(xué) 來源: 題型:

(2012?鄭州模擬)如圖,中等邊三角形ABC的邊長為6厘米,其中DE分別是各邊的中點,分別以A、B、C為圓心,AD、BE、CF為半徑畫弧,中間陰影部分的周長是
9.42厘米
9.42厘米

查看答案和解析>>

科目:小學(xué)數(shù)學(xué) 來源: 題型:

在平面內(nèi),旋轉(zhuǎn)變換試指某一個圖形繞一個定點按順時針或逆時針旋轉(zhuǎn)一定的角度而得到新位置圖形的一種變換.

活動一:如圖①,在Rt△ABC中,D為斜邊AB上的一點,AD=2,BD=1,且四邊形DECF是正方形,在求陰影部分面積時,小明運用圖形旋轉(zhuǎn)的方法,將△DBF繞點D逆時針旋轉(zhuǎn)90°,得到△DGE(如圖②所示),小明一眼就看到答案,請你寫出陰影部分的面積
1
1

活動二:如圖③,在四邊形ABCD中,AB=AD,∠BAD=∠C=90°,BC=5,CD=3,過點A作AE⊥BC,垂足為點E,小明仍運用圖形旋轉(zhuǎn)的方法,將△ABE繞點A逆時針旋轉(zhuǎn)90°,得到△ADG(如圖④所示),則:
(1)四邊形AECG是怎樣的特殊四邊形?答:
正方形
正方形
;
(2)AE的長是
4
4

活動三:如圖⑤,在四邊形ABCD中,AB⊥AD,CD⊥AD,將BC繞點B逆時針旋轉(zhuǎn)90°得到線段BE,連接AE.若AB=2,DC=4,求△ABE的面積.

查看答案和解析>>

科目:小學(xué)數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,正方形的ABCD的邊長是1厘米,現(xiàn)在依次以A、B、C、D為圓心,以AD、BE、CF、DG為半徑畫扇形,得到圖中陰影部分.則陰影部分的面積為
 
,圖形外周長為
 
.(π取3.14,寫出計算過程)

查看答案和解析>>

科目:小學(xué)數(shù)學(xué) 來源: 題型:解答題

在平面內(nèi),旋轉(zhuǎn)變換試指某一個圖形繞一個定點按順時針或逆時針旋轉(zhuǎn)一定的角度而得到新位置圖形的一種變換.

活動一:如圖①,在Rt△ABC中,D為斜邊AB上的一點,AD=2,BD=1,且四邊形DECF是正方形,在求陰影部分面積時,小明運用圖形旋轉(zhuǎn)的方法,將△DBF繞點D逆時針旋轉(zhuǎn)90°,得到△DGE(如圖②所示),小明一眼就看到答案,請你寫出陰影部分的面積______.
活動二:如圖③,在四邊形ABCD中,AB=AD,∠BAD=∠C=90°,BC=5,CD=3,過點A作AE⊥BC,垂足為點E,小明仍運用圖形旋轉(zhuǎn)的方法,將△ABE繞點A逆時針旋轉(zhuǎn)90°,得到△ADG(如圖④所示),則:
(1)四邊形AECG是怎樣的特殊四邊形?答:______;
(2)AE的長是______.
活動三:如圖⑤,在四邊形ABCD中,AB⊥AD,CD⊥AD,將BC繞點B逆時針旋轉(zhuǎn)90°得到線段BE,連接AE.若AB=2,DC=4,求△ABE的面積.

查看答案和解析>>

同步練習(xí)冊答案