①1993+1994+1995+1996+1997+1998+1999+2000=
②(0.75×42.7+57.3-0.573×25)÷3×7972=
解:(1)1993+1994+1995+1996+1997+1998+1999+2000,
=(1993+2000)×8÷2,
=3993×4,
=15972.
(2)(0.75×42.7+57.3-0.573×25)÷3×7972,
=(0.75×42.7+57.3-57.3×0.25)÷3×7972,
=[0.75×42.7+57.3×(1-0.25)]÷3×7972,
=[0.75×42.7+57.3×0.75]÷3×7972,
=[0.75×(42.7+57.3)]÷3×7972,
=0.75×100÷3×7972,
=75÷3×7972,
=25×7972,
=25×(4×1993),
=25×4×1993,
=100×1993,
=199300.
分析:(1)這是一道典型的等差數列求和.首項與末項之和×項數÷2,
首項=這個數列的第一個數1993.末項=最后一個數2000.
項數=這個數列中有幾個數,即8.
項數很長的時候,可用公式:項數=(末項-首項)÷公差+1 公差即2個連著的數的差.
(2)根據題意,把0.573×25變成57.3×0.25,由乘法分配律,逐步解答即可.
點評:本題考查的目的是根據數字特點經過“轉化”變形,巧用等查數列求和、乘法分配律進行簡便計算即可.