在一列數(shù)中,若后一個數(shù)都比相鄰的前一個數(shù)相差同一個數(shù),我們稱這列數(shù)為等差數(shù)列.比如:3,7,11,15,19…現(xiàn)有5個數(shù)2.5,A,□,C,10.9組成等差數(shù)列,那么A=
4.6
4.6
分析:要想知道A是多少,就要先求出這個等差數(shù)列的公差是多少,已知這個等差數(shù)列的首項是2.5,末項是10.9,所以可設(shè)這個數(shù)列的公差為x,由此可得等量關(guān)系式:2.5+(5-1)x=10.9.解此方程求出公差后,即能求出A是多少了.
解答:解:設(shè)這個數(shù)列的公差為x,由此可得方程:
2.5+(5-1)x=10.9
      2.5+4x=10.9,
          4x=8.4,
           x=2.1.
則A=2.5+2.1=4.6.
故答案為:4.6.
點評:根據(jù)等差數(shù)列中相鄰兩個數(shù)的差相等的特性列出等量關(guān)系式是完成本題關(guān)。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:小學(xué)數(shù)學(xué) 來源: 題型:071

對策問題

  在數(shù)學(xué)競賽中,有一類很有趣味的智辦游戲題,涉及到的課本知識并不多,但是技巧性比較強。在智力游戲中,對立者總是竭盡全力爭取最大的勝利,不希望自己失敗,因此對立者都認真選擇對付對方的方法。用數(shù)學(xué)的觀點和方法來研究取勝的策略叫做對策問題。

  提問 在黑板上寫下一列自然數(shù)2,34,5,…,19931994,甲先擦去其中一個數(shù),然后乙再擦去一個數(shù),如此輪流地擦下去,若最后剩下兩個互質(zhì)數(shù)時,甲取勝,若最后剩下兩個不是互質(zhì)數(shù)時,乙取勝,這個游戲中誰取勝的可能性最大?

  解 在23,45,…,1993,1994這一列數(shù)中,共有997個偶數(shù),996個奇數(shù),而且這一列數(shù)都是連續(xù)的自然數(shù)。大家知道,相鄰的兩個自然數(shù)一定是互質(zhì)數(shù)。如果甲先擦去一個偶數(shù)2,就還剩下996個偶數(shù)和996個奇數(shù),這時乙擦去某一個奇數(shù)時,甲就擦去其相鄰后面的那個偶數(shù),乙擦去某一個偶數(shù)時,甲就擦去其相鄰前面的那個奇數(shù),如此這般地擦995次后,就只剩下相鄰的一奇數(shù)一偶數(shù),它們必是互質(zhì)數(shù),甲必勝。

查看答案和解析>>

科目:小學(xué)數(shù)學(xué) 來源:數(shù)學(xué)教研室 題型:072

對策問題

  在數(shù)學(xué)競賽中,有一類很有趣味的智辦游戲題,涉及到的課本知識并不多,但是技巧性比較強。在智力游戲中,對立者總是竭盡全力爭取最大的勝利,不希望自己失敗,因此對立者都認真選擇對付對方的方法。用數(shù)學(xué)的觀點和方法來研究取勝的策略叫做對策問題。

  提問 在黑板上寫下一列自然數(shù)23,45,…,1993,1994,甲先擦去其中一個數(shù),然后乙再擦去一個數(shù),如此輪流地擦下去,若最后剩下兩個互質(zhì)數(shù)時,甲取勝,若最后剩下兩個不是互質(zhì)數(shù)時,乙取勝,這個游戲中誰取勝的可能性最大?

  解 在23,45,…,19931994這一列數(shù)中,共有997個偶數(shù),996個奇數(shù),而且這一列數(shù)都是連續(xù)的自然數(shù)。大家知道,相鄰的兩個自然數(shù)一定是互質(zhì)數(shù)。如果甲先擦去一個偶數(shù)2,就還剩下996個偶數(shù)和996個奇數(shù),這時乙擦去某一個奇數(shù)時,甲就擦去其相鄰后面的那個偶數(shù),乙擦去某一個偶數(shù)時,甲就擦去其相鄰前面的那個奇數(shù),如此這般地擦995次后,就只剩下相鄰的一奇數(shù)一偶數(shù),它們必是互質(zhì)數(shù),甲必勝。

查看答案和解析>>

同步練習(xí)冊答案