分析:①通過觀察,原式變?yōu)椋?00-98)+(96-94)+(92-90)+…+(8-6)+(4-2),每個括號內(nèi)的結果為2,共有25個2;
②運用乘法分配律簡算;
③括號內(nèi)的算式變?yōu)?8×4,原式變?yōu)?8×4×25,運用乘法結合律簡算;
④運用減法的性質(zhì)以及加法交換律與結合律簡算;
⑤運用加法交換律與結合律,把999看作1000-1,變?yōu)椋?54+545)+999×(1000-1),計算即可;
⑥把1999看作2000-1,計算即可.
解答:解:①100-98+96-94+92-90+…+8-6+4-2,
=(100-98)+(96-94)+(92-90)+…+(8-6)+(4-2),
=2+2+2+…+2+2,
=2×25,
=50;
②(25+125)×8,
=25×8+125×8,
=25×4×2+1000,
=200+1000,
=1200;
③(98+98+98+98)×25,
=98×4×25,
=98×(4×25),
=98×100,
=9800;
④785-(217+185),
=785-217-185,
=785-185-217,
=600-217,
=383;
⑤454+999×999+545,
=(454+545)+999×(1000-1),
=1000+999×1000-999,
=1000×(1+999)-999,
=1000000-999,
=999001;
⑥426+1999,
=426+(2000-1)
=426-1+2000,
=425+2000,
=2425.
點評:完成此題,注意分析式中數(shù)據(jù),運用合適的運算定律或運算技巧,靈活簡算.