【題目】如圖,某水渠的橫斷面是等腰梯形,已知其斜坡AD的坡度為1:1.2,斜坡BC的坡度為1:0.8,現(xiàn)測得放水前的水面寬EF3.8米,當(dāng)水閘放水后,水渠內(nèi)水面寬GH6米.則放水后水面上升的高度是( 。┟祝

A. 1.2 B. 1.1 C. 0.8 D. 2.2

【答案】B

【解析】解:過點EEMGH于點M,過點FFNGH于點N,可得四邊形EFNM為矩形,則MN=EF,設(shè)ME=FN=x,在Rt△GME中,斜坡AD的坡度為11.2,MEGM=11.2,GM=1.2xRt△NHF中,斜坡BC的坡度為10.8NFNH=10.8,NH=0.8x,則GH=1.2x+0.8x+3.8=6,解得:x=1.1故選B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,將△ABO繞點A順時針旋轉(zhuǎn)到的位置,點BO分別落在點、處,點x軸上,再將繞點順時針旋轉(zhuǎn)到的位置,點x軸上,將繞點順時針旋轉(zhuǎn)到的位置,點x軸上,依次進行下去…若點, ,則點的坐標(biāo)為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】山西民間的雕刻藝術(shù)源遠流長,主要以古代傳統(tǒng)吉祥紋樣為素材,以石雕、木雕磚雕等形式,來體現(xiàn)主人的高尚情操和文化修養(yǎng)以及人們的美好愿望.某木雕經(jīng)銷商購進木象木馬兩種雕刻藝術(shù)品,購木象藝術(shù)品共用了元,木馬藝術(shù)品共用了元已知木馬每件的進價比木象每件的進價貴元,且購進木象”“木馬的數(shù)量相同.

求每件木象、木馬藝術(shù)品的進價;

該經(jīng)銷商將購進的兩種藝術(shù)品進行銷售,木象的銷售單價為元,木馬的銷售單價為元,銷售過程中發(fā)現(xiàn)木象的銷量不好,經(jīng)銷商決定:“木象銷售一定數(shù)量后,將剩余的木象按原銷售單價的七折銷售;木馬的銷售單價保持不變要使兩種藝術(shù)品全部售完后共獲利不少于元,問木象按原銷售單價應(yīng)至少銷售多少件?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為了解七、八年級學(xué)生對防溺水安全知識的掌握情況,從七、八年級各隨機抽取50名學(xué)生進行測試,并對成績(百分制)進行整理、描述和分析.部分信息如下:

a.七年級成績頻數(shù)分布直方圖:

b.七年級成績在這一組的是:70 72 74 75 76 76 77 77 77 78 79

c.七、八年級成績的平均數(shù)、中位數(shù)如下:

年級

平均數(shù)

中位數(shù)

76.9

m

79.2

79.5

根據(jù)以上信息,回答下列問題:

1)在這次測試中,七年級在80分以上(含80分)的有   人;

2)表中m的值為   ;

3)在這次測試中,七年級學(xué)生甲與八年級學(xué)生乙的成績都是78分,請判斷兩位學(xué)生在各自年級的排名誰更靠前,并說明理由;

4)該校七年級學(xué)生有400人,假設(shè)全部參加此次測試,請估計七年級成績超過平均數(shù)76.9分的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次方程x2+5x+3﹣3m=0有兩個不相等的實數(shù)根.

(1)求m的取值范圍;

(2)若m為負整數(shù),求此時方程的根.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2020年年初,在我國湖北等地區(qū)爆發(fā)了新型冠狀病毒引發(fā)的肺炎疫情,對此湖北武漢率先采取了封城的措施,為了解決武漢市民的生活物資緊缺問題,某省給武漢捐獻一批水果和蔬菜共435噸,其中蔬菜比水果多97噸.

1)求蔬菜和水果各有多少噸?

2)某慈善組織租用甲、乙兩種貨車共16輛,已知一輛甲車同時可裝蔬菜18噸,水果10噸;一輛乙車同時可裝蔬菜16噸,水果11噸;若將這批貨物一次性運到武漢,有哪幾種租車方案?請你幫忙設(shè)計出來.

3)若甲種貨車每輛需付燃油費1600元,乙種貨車每輛需付燃油費1200元,應(yīng)選(2)中的那種方案,才能使所付的燃油費最少?最少的燃油費是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,點P、Q分別是等邊△ABC邊AB、BC上的動點(端點除外),點P從頂點A、點Q從頂點B同時出發(fā),且它們的運動速度相同,連接AQ、CP交于點M.

(1)求證:△ABQ≌△CAP;

(2)當(dāng)點P、Q分別在AB、BC邊上運動時,∠QMC變化嗎?若變化,請說明理由;若不變,求出它的度數(shù).

(3)如圖2,若點P、Q在運動到終點后繼續(xù)在射線AB、BC上運動,直線AQ、CP交點為M,則∠QMC變化嗎?若變化,請說明理由;若不變,直接寫出它的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù), 為實數(shù)).

)當(dāng), 取何值時,函數(shù)是二次函數(shù).

)若它是一個二次函數(shù),假設(shè),那么:

它一定經(jīng)過哪個點?請說明理由.

若取該函數(shù)上橫坐標(biāo)滿足為整數(shù))的所有點,組成新函數(shù).當(dāng)時, 的增大而增大,且時是函數(shù)最小值,求滿足的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某檢修小組1乘一輛汽車沿公路檢修線路,約定向東為正。某天從A地出發(fā)到收工時,行走記錄為(單位:千米):+15,-2,+5,-1,+10,-3,-2,+12,+4,-5,+6。另一小組2也從A地出發(fā),在南北向修,約定向北為正,行走記錄為:-17,+9,-2,+8,+6,+9,-5,-1,+4,-7,-8.

(1)分別計算收工時,1,2兩組在A地的哪一邊,距A地多遠?

(2)若每千米汽車耗油a升,求出發(fā)到收工各耗油多少升?

查看答案和解析>>

同步練習(xí)冊答案