【題目】如圖,將一刻度尺放在數(shù)軸上.

①若刻度尺上 0cm 4cm 對應數(shù)軸上的點表示的數(shù)分別為 1 5,則 1cm 對應數(shù)軸上的點表示的數(shù)是 2

②若刻度尺上 0cm 4cm 對應數(shù)軸上的點表示的數(shù)分別為 1 9,則 1cm 對應數(shù)軸上的點表示的數(shù)是 3;

③若刻度尺上 0cm 4cm 對應數(shù)軸上的點表示的數(shù)分別為-2 2,則 1cm 對應數(shù)軸上的點表示的數(shù)是-1

④若刻度尺上 0cm 4 cm 對應數(shù)軸上的點表示的數(shù)分別為-1 1,則 1cm 對應數(shù)軸上的點表示的數(shù)是-0.5. 上述結(jié)論中,所有正確結(jié)論的序號是

A.①②B.②④C.①②③D.①②③④

【答案】D

【解析】

首先計算出兩點之間的距離為幾個單位長度,再除以刻度值的長度,可知每1cm表示的單位長度是多少,再根據(jù)0cm刻度對應的數(shù)判斷1cm刻度對應的數(shù)即可.

①數(shù)15之間有4個單位長度,則每厘米表示4÷4=1個單位長度,0cm表示數(shù)1,則1cm表示1+1=2.正確.

②數(shù)19之間有8個單位長度,則每厘米表示8÷4=2個單位長度,0cm表示數(shù)1,則1cm表示1+2=3.正確.

③數(shù)-22之間有4個單位長度,則每厘米表示4÷4=1個單位長度,0cm表示數(shù)-2,則1cm表示-2+1=-1.正確.

④數(shù)-11之間有2個單位長度,則每厘米表示2÷4=0.5個單位長度,0cm表示數(shù)-1,則1cm表示-1+0.5=-0.5.正確.

故答案為:D.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,已知⊙O的半徑為1PQ是⊙O的直徑,n個相同的正三角形沿PQ排成一列,所有正三角形都關(guān)于PQ對稱,其中第一個A1B1C1的頂點A1與點P重合,第二個A2B2C2的頂點A2B1C1PQ的交點……最后一個AnBnCn的頂點Bn,Cn在圓上.

(1)如圖②,當n1時,求正三角形的邊長a1.

(2)如圖③,當n2時,求正三角形的邊長a2.

(3)如圖①,求正三角形的邊長an(用含n的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將△ABC繞著點C順時針旋轉(zhuǎn)50°后得到△A'B'C'.若∠A=40°,∠B'=110°,∠BCA'的度數(shù)是( 。

A.110°B.80°C.40°D.30°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,過軸正半軸上的任意一點,作軸的平行線,分別與反比例函數(shù)的圖象交于點和點,點軸上一點,連接、,則的面積為(

A. 3B. 4C. 5D. 6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】綜合與探究:

如圖,拋物線y=x2x4x軸交與A,B兩點(點B在點A的右側(cè)),與y軸交于點C,連接BC,以BC為一邊,點O為對稱中心作菱形BDEC,點Px軸上的一個動點,設點P的坐標為(m,0),過點Px軸的垂線l交拋物線于點Q

1)求點A,B,C的坐標.

2)當點P在線段OB上運動時,直線l分別交BD,BC于點M,N.試探究m為何值時,四邊形CQMD是平行四邊形,此時,請判斷四邊形CQBM的形狀,并說明理由.

3)當點P在線段EB上運動時,是否存在點Q,使BDQ為直角三角形?若存在,請直接寫出點Q的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了美化生活環(huán)境,小蘭的爸爸要在院墻外的一塊空地上修建一個矩形花圃.如圖所示,矩形花圃的一邊利用長10米的院墻,另外三條邊用籬笆圍成,籬笆的總長為32米.設AB的長為x米,矩形花圃的面積為y平方米.

(1)用含有x的代數(shù)式表示BC的長,BC=   ;

(2)求yx的函數(shù)關(guān)系式,寫出自變量x的取值范圍;

(3)當x為何值時,y有最大值?最大值為多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,下列結(jié)論:①abc>0;②當x≥1時,yx的增大而減小;③2a+b=0;b2﹣4ac>0;,其中正確的個數(shù)是( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,已知四邊形ABCD是平行四邊形,∠C=70°,若AF、BE分別為∠DAB、∠CBA的平分線.

求證:(1DFEC;(2)求∠DFA的大小。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖網(wǎng)格中每個小正方形的邊長均為1,線段AB、CD的端點都在小正方形的頂點上.

(1)圖(1)中,畫一個以線段AB一邊的四邊形ABEF,且四邊形ABEF是面積為7的中心對稱圖形,點E、F都在小正方形的頂點上,并直接寫出線段BE的長;

(2)在圖(2)中,畫一個以線段CD為斜邊直角三角形CDG,且△CDG的面積是2,點G在小方形的頂點上。

查看答案和解析>>

同步練習冊答案