【題目】如圖,在正方形ABCD中,點E、F、G、H分別是AB、BC、CD、DA邊上的動點,且AE=BF=CG=DH.

(1)求證:△AEH≌△CGF;

(2)在點E、F、G、H運動過程中,判斷直線EG是否經(jīng)過某一個定點,如果是,請證明你的結(jié)論;如果不是,請說明理由.

【答案】(1)見解析;(2)直線EG經(jīng)過一個定點,這個定點為正方形的中心(AC、BD的交點);理由見解析.

【解析】分析:(1)由正方形的性質(zhì)得出∠A=C=90°,AB=BC=CD=DA,由AE=BF=CG=DH證出AH=CF,由SAS證明AEH≌△CGF即可求解;

(2)連接AC、EG,交點為O;先證明AOE≌△COG,得出OA=OC,證出O為對角線AC、BD的交點,即O為正方形的中心.

詳解:(1)證明:∵四邊形ABCD是正方形,

∴∠A=C=90°,AB=BC=CD=DA,

AE=BF=CG=DH,

AH=CF,

AEHCGF中,

AH=CF,A=C,AE=CG,

∴△AEH≌△CGF(SAS);

(2)直線EG經(jīng)過一個定點,這個定點為正方形的中心(AC、BD的交點);理由如下:

連接AC、EG,交點為O;如圖所示:

∵四邊形ABCD是正方形,

ABCD,

∴∠OAE=OCG,

AOECOG中,

OAE=OCG,AOE=COG,AE=CG,

∴△AOE≌△COG(AAS),

OA=OC,OE=OG,

OAC的中點,

∵正方形的對角線互相平分,

O為對角線AC、BD的交點,即O為正方形的中心.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,中,,,中點,,給出四個結(jié)論:①;②;③;④,其中成立的有(

A.4B.3C.2D.1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:在平面直角坐標(biāo)系中,點為坐標(biāo)原點,的頂點的坐標(biāo)為,頂點軸上(在點的右側(cè)),點上,連接,且

(1)如圖1,求點的縱坐標(biāo);

(2)如圖2,點軸上(在點的左側(cè)),點上,連接于點;若,求證:

(3)如圖3,在(2)的條件下,的角平分線,點與點關(guān)于軸對稱,過點分別交于點,若,求點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,四邊形的頂點是坐標(biāo)原點,點在第一象限,點在第四象限,點軸的正半軸上.,的長分別是二元一次方程組的解().

1)求點和點的坐標(biāo);

2)點是線段上的一個動點(點不與點,重合),過點的直線軸平行,直線交邊或邊于點,交邊或邊于點.設(shè)點的橫坐標(biāo)為,線段的長度為.已知時,直線恰好過點

①當(dāng)時,求關(guān)于的函數(shù)關(guān)系式;

②當(dāng)時,求點的橫坐標(biāo)的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AB=8,BC=6,P為AD上一點,將△ABP沿BP翻折至△EBP,PE與CD相交于點O,BE與CD相交于點G,且OE=OD,則AP的長為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(14分)如圖,在平面直角坐標(biāo)系中,拋物線y=mx2﹣8mx+4m+2m2)與y軸的交點為A,與x軸的交點分別為Bx1,0),Cx2,0),且x2﹣x1=4,直線AD∥x軸,在x軸上有一動點Et0)過點E作平行于y軸的直線l與拋物線、直線AD的交點分別為PQ

1)求拋物線的解析式;

2)當(dāng)0t≤8時,求△APC面積的最大值;

3)當(dāng)t2時,是否存在點P,使以A、P、Q為頂點的三角形與△AOB相似?若存在,求出此時t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖直線l1的解析式為y=x+1,直線l2的解析式為y=ax+b(a≠0);這兩個圖象交于y軸上一點C,直線l2x軸的交點B(2,0)

(1)求a、b的值;

(2)過動點Q(n,0)且垂直于x軸的直線與l1、l2分別交于點M、N都位于x軸上方時,求n的取值范圍

(3)動點P從點B出發(fā)沿x軸以每秒1個單位長的速度向左移動,設(shè)移動時間為t秒,當(dāng)△PAC為等腰三角形時,直接寫出t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,點E是AB邊的中點,DE與CB的延長線交于點F.

(1)求證:ADE≌△BFE;

(2)若DF平分ADC,連接CE.試判斷CE和DF的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中,,,點是線段上一動點(不與,重合).

1)如圖1,當(dāng)點的中點,過點的延長線于點,求證:;

2)連接,作于點.時,如圖2

______;

②求證:為等腰三角形;

(3)連接CD,∠CDE=30°,在點的運動過程中,的形狀可以是等腰三角形嗎?若可以,請求出的度數(shù);若不可以,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案