【題目】(1)如圖①,在四邊形ABCD中,AB∥DC,E是BC的中點,若AE是∠BAD的平分線,求證:AD=DC+AB,
(2)如圖②,在四邊形ABCD中,AB∥DC,F(xiàn)是DC延長線上一點,連接AF,E是BC的中點,若AE是∠BAF的平分線,求證:AB=AF+CF.
【答案】(1)證明見解析; (2)證明見解析.
【解析】
(1)延長AE交DC的延長線于點F,證明△AEB≌△FEC,根據(jù)全等三角形的性質(zhì)得到AB=FC,根據(jù)等腰三角形的判定得到DF=AD,證明結(jié)論;
(2)延長AE交DF的延長線于點G,利用同(1)相同的方法證明.
解:(1)延長AE交DC的延長線于點F,
∵E是BC的中點,
∴CE=BE,
∵AB∥DC,
∴∠BAE=∠F,
在△AEB和△FEC中,,
∴△AEB≌△FEC,
∴AB=FC,
∵AE是∠BAD的平分線,
∴∠BAE=∠EAD,
∵AB∥CD,
∴∠BAE=∠F,
∴∠EAD=∠F,
∴AD=DF,
∴AD=DF=DC+CF=DC+AB,
(2)如圖②,延長AE交DF的延長線于點G,
∵E是BC的中點,
∴CE=BE,
∵AB∥DC,
∴∠BAE=∠G,
在△AEB和△GEC中, ,
∴△AEB≌△GEC,
∴AB=GC,
∵AE是∠BAF的平分線,
∴∠BAG=∠FAG,
∵AB∥CD,
∴∠BAG=∠G,
∴∠FAG=∠G,
∴FA=FG,
∴AB=CG=AF+CF.
科目:初中數(shù)學 來源: 題型:
【題目】某商場為了吸引顧客,設計了一種促銷活動:在一個不透明的箱子里放有4個相同的小球,球上分別標有“0元”、“10元”、“20元”和“30元”的字樣.規(guī)定:顧客在本商場同一日內(nèi),每消費滿200元,就可以在箱子里先后摸出兩個球(第一次摸出后不放回),商場根據(jù)兩小球所標金額的和返還相應價格的購物券,可以重新在本商場消費,某顧客剛好消費200元.
(1)該顧客至少可得到元購物券,至多可得到元購物券;
(2)請你用畫樹狀圖或列表的方法,求出該顧客所獲得購物券的金額不低于30元的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,身高1.6米的小明從距路燈的底部(點O)20米的點A沿AO方向行走14米到點C處,小明在A處,頭頂B在路燈投影下形成的影子在M處.
(1)已知燈桿垂直于路面,試標出路燈P的位置和小明在C處,頭頂D在路燈投影下形成的影子N的位置.
(2)若路燈(點P)距地面8米,小明從A到C時,身影的長度是變長了還是變短了?變長或變短了多少米?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,⊙D與y軸相切于點C(0,4),與x軸相交于A、B兩點,且AB=6.
(1)求圓的半徑和點D的坐標;
(2)點A的坐標是 , 點B的坐標是 , sin∠ACB;
(3)求經(jīng)過C、A、B三點的拋物線解析式;
(4)設拋物線的頂點為F,證明直線FA與⊙D相切.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】育才中學計劃召開“誠信在我心中”主題教育活動,需要選拔活動主持人,經(jīng)過全校學生投票推薦,有2名男生和1名女生被推薦為候選主持人.
(1)小明認為,如果從3名候選主持人中隨機選拔1名主持人,不是男生就是女生,因此選出的主持人是男生和女生的可能性相同,你同意他的說法嗎?為什么?
(2)如果從3名候選主持人中隨機選拔2名主持人,請通過列表或樹狀圖求選拔出的2名主持人恰好是1名男生和1名女生的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABD和△ACE分別是等邊三角形,AB≠AC,下列結(jié)論中正確有( )個.
⑴DC=BE,⑵∠BOD=60°,⑶∠BDO=∠CEO,⑷AO平分∠DOE,⑸AO平分∠BAC
A. 2 B. 3 C. 4 D. 5
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖(1)將長方形紙片ABCD的一邊CD沿著CQ向下折疊,使點D落在邊AB上的點P處.
(1)試判斷線段CQ與PD的關系,并說明理由;
(2)如圖(2),若AB=CD=5,AD=BC=3.求AQ的長;
(3)如圖(2),BC=3,取CQ的中點M,連接MD,PM,若MD⊥PM,求AQ(AB+BC)的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知A(-2,1)、B(n,-2)是一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=的圖象的兩個交點.
(1) 求此反比例函數(shù)和一次函數(shù)的解析式;
(2) 根據(jù)圖象直接寫出使一次函數(shù)的值大于反比例函數(shù)的值的x的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com