精英家教網 > 初中數學 > 題目詳情

【題目】如圖,身高1.6米的小明從距路燈的底部(點O)20米的點A沿AO方向行走14米到點C處,小明在A處,頭頂B在路燈投影下形成的影子在M處.

(1)已知燈桿垂直于路面,試標出路燈P的位置和小明在C處,頭頂D在路燈投影下形成的影子N的位置.
(2)若路燈(點P)距地面8米,小明從A到C時,身影的長度是變長了還是變短了?變長或變短了多少米?

【答案】
(1)

解:如圖


(2)

解:設在A處時影長AM為x米,在C處時影長CN為y米

,解得x=5,

,解得y=1.5,

∴x﹣y=5﹣1.5=3.5

∴變短了,變短了3.5米.


【解析】(1)連接MB并延長,與過點O作的垂直與路面的直線相交于點P,連接PD并延長交路面于點N,點P、點N即為所求;(2)利用相似三角形對應邊成比例列式求出AM、CN,然后相減即可得解.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】定義:如果一個分式能化成一個整式與一個分子為常數的分式的和的形式,則稱這個分式為和諧分式.如: ,則和諧分式

(1)下列分式中,屬于和諧分式的是_____(填序號)

;②;③;④;

(2)和諧分式化成一個整式與一個分子為常數的分式的和的形式為:_______(要寫出變形過程)

(3)應用:先化簡,并求x取什么整數時,該式的值為整數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】△ABC△A′B′C′中,①AB=AB′,②BC=BC′,③AC=AC′,④∠A=∠A′,⑤∠B=∠B′,⑥∠C=∠C,則下列各組條件中使△ABC△A′B′C′全等的是(

A. ④⑤⑥ B. ①②⑥ C. ①③⑤ D. ②⑤⑥

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在△ABC中,AC=BC,∠C=90°,DAB的中點,DE⊥DF,點E,F分別在AC,BC上,求證:DE=DF

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】△ABC中,∠A=150°.第一步△ABC上方確定一點A1,使∠A1BA=∠ABC,∠A1CA=∠ACB,如圖1.第二步△A1BC上方確定一點A2,使∠A2BA1=∠A1BA,∠A2CA1=∠A1CA,如圖2.照此下去,至多能進行( )步.

A. 3 B. 4 C. 5 D. 6

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知AB是⊙O的直徑,弦CD⊥AB于點E,點M在⊙O上,∠M=∠D.

(1)判斷BC、MD的位置關系,并說明理由;
(2)若AE=16,BE=4,求線段CD的長;
(3)若MD恰好經過圓心O,求∠D的度數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】(1)如圖,在四邊形ABCD中,AB∥DC,EBC的中點,若AE∠BAD的平分線,求證:AD=DC+AB,

(2)如圖,在四邊形ABCD中,AB∥DC,FDC延長線上一點,連接AF,EBC的中點,若AE∠BAF的平分線,求證:AB=AF+CF.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如∠MON30°、OP6,點A、B分別在OM、ON上;(1)請在圖中畫出周長最小的△PAB(保留畫圖痕跡);(2)請求出(1)中△PAB的周長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在△ABC中,AB=AC,點D是射線CB上的一動點(不與點BC重合),以AD為一邊在AD的右側作△ADE,使AD=AE,∠DAE=∠BAC,連接CE

(1)如圖1,當點D在線段CB上,且∠BAC=90°時,那么∠DCE= 度;

(2)設∠BAC= ,∠DCE=

① 如圖2,當點D在線段CB上,∠BAC≠90°時,請你探究之間的數量關系,并證明你的結論;

② 如圖3,當點D在線段CB的延長線上,∠BAC≠90°時,請將圖3補充完整,并直接寫出此時之間的數量關系(不需證明).

查看答案和解析>>

同步練習冊答案