【題目】如圖,已知反比例函數(shù)(k<0)的圖像經(jīng)過點A(,m),過點A作AB⊥x軸于點,且△AOB的面積為.
(1)求k和m的值;
(2)若一次函數(shù)y=ax+1的圖像經(jīng)過點A,并且與x軸相交于點C,求∠ACO的度數(shù)及的值.
【答案】(1)k=;(2)│AO│:│AC│= .
【解析】試題分析:(1)根據(jù)的面積為,得到反比例函數(shù)的解析式,進而可以求出的值.
(2)把A代入y=ax+1中,就可以求出的值,得到函數(shù)的解析式,因而求出 點的坐標(biāo),在中就可以求出的值,得到的值,在中,根據(jù)勾股定理就可以求出的值.
試題解析:
(1)∵,
∴,∴m=2,
又過點A,則,
∴k=.
(2)∵直線y=ax+1過A,
∴,
∴.
當(dāng)y=0時, ,
∴C,BC=,
又tan∠ACO=,
∴∠ACO=30°.在Rt△ABO中,AO=,在Rt△ABC中,AC=2AB=4.
∴│AO│:│AC│=.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】利用完全平方公式因式分解在數(shù)學(xué)中的應(yīng)用,請回答下列問題:
(1)因式分解:_______.
(2)填空:
①當(dāng)時,代數(shù)式_______.
②當(dāng)_______時,代數(shù)式;
③代數(shù)式的最小值是_______.
(3)拓展與應(yīng)用:當(dāng)、為何值時,代數(shù)式有最小值,并求出這個最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知直線AB//CD,P是兩條直線之間一點,且AP⊥PC于P.
(1) 如圖1,求證:∠BAP+∠DCP=90°;
(2)如圖2,CQ平分∠PCG,AH平分∠BAP,直線AH、CQ交于Q,求∠AQC的度數(shù);
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知:點A(0,0),B( ,0),C(0,1)在△ABC內(nèi)依次作等邊三角形,使一邊在x軸上,另一個頂點在BC邊上,作出的等邊三角形分別是第1個△AA1B1 , 第2個△B1A2B2 , 第3個△B2A3B3 , …,則第n個等邊三角形的邊長等于 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知反比例函數(shù) 的圖象經(jīng)過點( ,8),直線y=﹣x+b經(jīng)過該反比例函數(shù)圖象上的點Q(4,m).
(1)求上述反比例函數(shù)和直線的函數(shù)表達式;
(2)設(shè)該直線與x軸、y軸分別相交于A、B兩點,與反比例函數(shù)圖象的另一個交點為P,連接0P、OQ,求△OPQ的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,F(xiàn)是BC上的一點,直線DF與AB的延長線相交于點E,BP∥DF,且與AD相交于點P,則圖中相似三角形的組數(shù)為( )
A.3
B.4
C.5
D.6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠ABC=70°,以B為圓心,任意長為半徑畫弧交AB,BC于點E,F(xiàn),再分別以點E,F(xiàn)為圓心、以大于EF長為半徑畫弧,兩弧交于點P,作射線BP交AC于點D,則∠BDC為( )度.
A. 65 B. 75 C. 80 D. 85
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,方格紙中每一個小方格的邊長為1個單位,試解答下列問題:
(1)的頂點都在方格紙的格點上,先將向右平移2個單位,再向上平移3個單位,得到,其中點、、分別是、、的對應(yīng)點,試畫出;
(2)連接,則線段 的位置關(guān)系為____,線段的數(shù)量關(guān)系為___;
(3)平移過程中,線段掃過部分的面積_____.(平方單位)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com