【題目】問題發(fā)現(xiàn)如圖,已知:AB=AC,∠BAC=90°,直線m經(jīng)過點A,過點BBD⊥mD, CE⊥mE.我們把這種常見圖形定義為“K”字圖.很容易得到線段DE、BD、CE之間的數(shù)量關系是 .

拓展探究:如圖2,AB=AC,∠BAC=∠BDA=∠AEC,則線段DE、BD、CE之間的數(shù)量關系還成立嗎?如果成立,請證明之.

解決問題:如圖3,AB=AC,∠BAC=∠BDA=∠AEC=120°,點F為∠BAC平分線上的一點,且△ABF和△ACF均為等邊三角形,BD=2,CE=4,求△DEF的周長.

【答案】(1)DE=BD+CE;(2)詳見解析;(3)18.

【解析】

試題根據(jù)根據(jù)等角的余角相等得然后根據(jù)“AAS”可判斷于是
(2)利用得出進而得出即可得出答案;
(3)由均為等邊三角形,得到利用得出進而得出根據(jù)全等三角形的性質得到,得到,根據(jù)全等三角形的性質得到根據(jù)得到結論.

試題解析:證明:(1)BD⊥直線mCE⊥直線m,

ADBCEA中,

ADBCEA中,

(3)ABFACF均為等邊三角形,

ADBCEA中,

BDFAEF,

是等邊三角形.

的周長為:18.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】數(shù)軸是一個非常重要的數(shù)學工具,通過它把數(shù)和數(shù)軸上的點建立起對應關系,揭示了數(shù)與點之間的內(nèi)在聯(lián)系,它是“數(shù)形結合”的基礎.已知數(shù)軸上有點A和點B,點A和點B分別表示數(shù)-20和40,請解決以下問題:

(1)請畫出數(shù)軸,并標明A、B兩點;

(2)若點P、Q分別從點A、點B同時出發(fā),相向而行,點P、Q移動的速度分別為每秒4個單位長度和2個單位長度.問:當P、Q相遇于點C時,C所對應的數(shù)是多少?

(3)若點P、Q分別從點A、點B同時出發(fā),沿x軸正方向同向而行,點P、Q移動的速度分別為每秒4個單位長度和2個單位長度.問:當P、Q相遇于點D時,D所對應的數(shù)是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知∠AOB=90°,∠BOC=30°,OM平分∠AOC,ON平分∠BOC

1)求∠MON的度數(shù);

2)若題干中的∠AOB=,其他條件不變,求∠MON的度數(shù);

3)若題干中的∠BOC=(為銳角),其他條件不變,求∠MON的度數(shù);

4)綜合(1)(2)(3)的結果,你能得出什么結論?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,已知∠AOB90°,∠BOC20°,OM平分∠AOC,ON平分∠BOC;

1)求∠MON;

2)∠AOB=α,∠BOC=β,求∠MON的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,D是BC邊上的點(不與點B、C重合),連結AD.

問題引入:
(1)如圖①,當點D是BC邊上的中點時,SABD:SABC=;當點D是BC邊上任意一點時,SABD:SABC=(用圖中已有線段表示).
(2)如圖②,在△ABC中,O點是線段AD上一點(不與點A、D重合),連結BO、CO,試猜想SBOC與SABC之比應該等于圖中哪兩條線段之比,并說明理由.
(3)如圖③,O是線段AD上一點(不與點A、D重合),連結BO并延長交AC于點F,連結CO并延長交AB于點E,試猜想 + + 的值,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某市居民用水實行階梯水價,實施細則如下表:

分檔水量

年用水量 (立方米)

水價 (/立方米)

第一階梯

0~180()

5.00

第二階梯

181~260()

7.00

第三階梯

260以上

9.00

例如,某戶家庭年使用自來水200 m3,應繳納:180×5+(200-180)×7=1040元;

某戶家庭年使用自來水300 m3,應繳納:180×5+(260-180)×7+(300-260)×9=1820元.

(1)小剛家2017年共使用自來水170 m3,應繳納 元;小剛家2018年共使用自來水260 m3,應繳納 元.

(2)小強家2018年使用自來水共繳納1180元,他家2018年共使用了多少自來水?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知不在同一條直線上的三點A,BC

(1)按下列要求作圖(用尺規(guī)作圖,不要求寫做法,但要保留作圖痕跡,并書寫結論)

①分別作射線BA,線段AC;

②在線段BA的延長線上作AD=AC.

(2)若∠CAD比∠CAB100°,則∠CAB的度數(shù)為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在邊長為正整數(shù)的△ABC中,AB=AC,且AB邊上的中線CD將△ABC的周長分為1:2的兩部分,則△ABC面積的最小值為(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將邊長為2cm的正方形ABCD沿其對角線AC剪開,再把△ABC沿著AD方向平移,得到△A’B’C’,若它移動的距離AA’等于1cm,則兩個三角形重疊部分的面積為____________cm2.

查看答案和解析>>

同步練習冊答案