【題目】把兩個全等的等腰直角三角板ABC和EFG疊放在一起,且使三角板EFG的直角頂點G與三角板ABC的斜邊中點O重合.現(xiàn)將三角板EFG繞O點順時針方向旋轉(旋轉角α滿足條件:0°<α<90°),四邊形CHGK是旋轉過程中兩三角板的重疊部分,已知AC=4.在旋轉過程中,下列結論:①BH=CK;②四邊形CHGK的面積等于4;③GK長度的最大值為2;④線段KH的長度最小值為2.其中正確的有( 。﹤
A.1B.2C.3D.4
【答案】D
【解析】
由等腰直角三角形的性質可判斷③,”ASA“可證△BGH≌△CGK,可得CK=BH,S△CKG=S△BHG,可判斷①②,由勾股定理和二次函數(shù)性質可判斷④.
解:連接CG,
∵AC=BC=4,∠ACB=90°,G是AB中點,
∴∠ACG=∠B=45°,AB=4,CG=BG=2,CG⊥AB,
∴當點K與點C重合時,GK有最大值為2,
故③正確,
∵∠KGH=∠CGB=90°,
∴∠KGC=∠BGH,且CG=BG,∠B=∠GCA,
∴△BGH≌△CGK(ASA),
∴CK=BH,S△CKG=S△BHG,
∴S四邊形CKGH=S△BGC=S△BCA=4,
故①②正確,
∵BH=CK
∴CH=4-CK
∵KH2=(4-CK)2+CK2=2(CK-2)2+8
∴當CK=2時,KH有最小值2
故④正確
故選:D.
科目:初中數(shù)學 來源: 題型:
【題目】乘法公式的探究及應用.
數(shù)學活動課上,老師準備了若干個如圖1的三種紙片,種紙片邊長為的正方形,種紙片是邊長為的正方形,種紙片長為、寬為的長方形,并用種紙片一張,種紙片一張,種紙片兩張拼成如圖2的大正方形.
(1)觀察圖2,請你寫出下列三個代數(shù)式:,,之間的等量關系.;
(2)若要拼出一個面積為的矩形,則需要號卡片1張,號卡片2張,號卡片 張.
(3)根據(1)題中的等量關系,解決如下問題:
①已知:,,求的值;
②已知,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在水果銷售旺季,某水果店購進一優(yōu)質水果,進價為20元/千克,售價不低于20元/千克,且不超過32元/千克,根據銷售情況,發(fā)現(xiàn)該水果一天的銷售量y(千克)與該天的售價x(元/千克)滿足如下表所示的一次函數(shù)關系.
銷售量y(千克) | … | 34.8 | 32 | 29.6 | 28 | … |
售價x(元/千克) | … | 22.6 | 24 | 25.2 | 26 | … |
(1)某天這種水果的售價為23.5元/千克,求當天該水果的銷售量.
(2)如果某天銷售這種水果獲利150元,那么該天水果的售價為多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,AC、BD是對角線,AC=AD,BC>AB,AB∥CD,AB=4,BD=2,tan∠BAC=3,則線段BC的長是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】聳立在臨清市城北大運河東岸的舍利寶塔,是“運河四大名塔”之一(如圖1).數(shù)學興趣小組的小亮同學在塔上觀景點P處,利用測角儀測得運河兩岸上的A,B兩點的俯角分別為17.9°,22°,并測得塔底點C到點B的距離為142米(A、B、C在同一直線上,如圖2),求運河兩岸上的A、B兩點的距離(精確到1米).(參考數(shù)據:sin22°≈0.37,cos22°≈0.93,tan22°≈0.40,sin17.9°≈0.31,cos17.9°≈0.95,tan17.9°≈0.32)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y1=x2+mx+n的圖象經過點P(﹣3,1),對稱軸是經過(﹣1,0)且平行于y軸的直線.
(1)求m,n的值.
(2)如圖,一次函數(shù)y2=kx+b的圖象經過點P,與x軸相交于點A,與二次函數(shù)的圖象相交于另一點B,點B在點P的右側,PA:PB=1:5,求一次函數(shù)的表達式.
(3)直接寫出y1>y2時x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,在△ABC中,∠BAC=90°,∠ABC=45°,點D為直線BC上一動點(點D不與點B,C重合).以AD為邊做正方形ADEF,連接CF
(1)如圖1,當點D在線段BC上時.求證CF+CD=BC;
(2)如圖2,當點D在線段BC的延長線上時,其他條件不變,請直接寫出CF,BC,CD三條線段之間的關系;
(3)如圖3,當點D在線段BC的反向延長線上時,且點A,F分別在直線BC的兩側,其他條件不變;
①請直接寫出CF,BC,CD三條線段之間的關系;
②若正方形ADEF的邊長為,對角線AE,DF相交于點O,連接OC.求OC的長度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線l:yx與直線l:y=kx+b相交于點A(a,3),直線交l交y軸于點B(0,﹣5).
(1)求直線l的解析式;
(2)將△OAB沿直線l翻折得到△CAB(其中點O的對應點為點C),求證:AC∥OB;
(3)在直線BC下方以BC為邊作等腰直角三角形BCP,直接寫出點P的坐標.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com