【題目】某藥廠銷售部門根據(jù)市場調(diào)研結(jié)果,對該廠生產(chǎn)的一種新型原料藥未來兩年的銷售進行預測,并建立如下模型:設第t個月該原料藥的月銷售量為P(單位:噸),P與t之間存在如圖所示的函數(shù)關(guān)系,其圖像是函數(shù)P=(0<t≤8)的圖像與線段AB的組合;設第t個月銷售該原料藥每噸的毛利潤為Q(單位:萬元),Q與t之間滿足如下關(guān)系:Q=
(1)當8<t≤24時,求P關(guān)于t的函數(shù)表達式;
(2)設第t個月銷售該原料藥的月毛利潤為w(單位:萬元)
①求w關(guān)于t的函數(shù)表達式;
②未來兩年內(nèi),當月銷售量P為時,月毛利潤為w達到最大.
【答案】(1)P=t+2;(2)①當0<t≤8時,w=240;當8<t≤12時,w=2t2+12t+16;當12<t≤24時,w=﹣t2+42t+88;②23
【解析】
(1)設8<t≤24時,P=kt+b,將A(8,10)、B(24,26)代入求解可得P=t+2;
(2)①分0<t≤8、8<t≤12和12<t≤24三種情況,根據(jù)月毛利潤=月銷量×每噸的毛利潤可得函數(shù)解析式;
②當0<t≤8時,w的值始終是240;當8<t≤12時,w=2t2+12t+16=2(t+3)22,當t=12時,求得w值;當12<t≤24時,w=﹣t2+42t+88=﹣(t﹣21)2+529,根據(jù)二次函數(shù)的增減性求得當t=21時w的值,進而可得到結(jié)論.
解:(1)設8<t≤24時,P=kt+b,
將A(8,10)、B(24,26)代入,得:
解得:,
∴P=t+2;
(2)∵w=P·Q
∴①當0<t≤8時,w=(2t+8)×=240;
當8<t≤12時,w=(2t+8) (t+2)=2t2+12t+16;
當12<t≤24時,w=(﹣t+44)(t+2)=﹣t2+42t+88;
②當0<t≤8時,w=240;
當8<t≤12時,w=2t2+12t+16=2(t+3)2﹣2,
∴8<t≤12時,w隨t的增大而增大,
當t=12時,w取得最大值,最大值為448,
當12<t≤24時,w=﹣t2+42t+88=﹣(t﹣21)2+529,
當t=21時,w取得最大值529,
∵529>448>240
∴t=21時,w取得最大值
此時P=t+2=23
科目:初中數(shù)學 來源: 題型:
【題目】如圖,轉(zhuǎn)盤A的三個扇形面積相等,分別標有數(shù)字1,2,3,轉(zhuǎn)盤B的四個扇形面積相等,分別標有數(shù)字1,2,3,4.轉(zhuǎn)動A、B轉(zhuǎn)盤各一次,當轉(zhuǎn)盤停止轉(zhuǎn)動時,將指針所落扇形中的兩個數(shù)字相乘(當指針落在四個扇形的交線上時,重新轉(zhuǎn)動轉(zhuǎn)盤).
(1)用樹狀圖或列表法列出所有可能出現(xiàn)的結(jié)果;
(2)若規(guī)定兩個數(shù)字的積為偶數(shù)時甲贏,兩個數(shù)字的積為奇數(shù)時乙贏,請問這個游戲?qū)住⒁覂扇耸欠窆剑?/span>
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校為了解該校學生參加體育晨跑情況,隨機抽查了部分學生最近兩周參加跑步活動的天數(shù),并用得到的數(shù)據(jù)繪制了兩幅統(tǒng)計圖,下面給出了兩幅不完整的統(tǒng)計圖:
請根據(jù)圖中提供的信息,回答下列問題:
(1)補全條形統(tǒng)計圖;
(2)本次抽樣調(diào)查的眾數(shù)為 ,中位數(shù)為 ;
(3)如果該校約有4500名學生,請你估計全?赡苡卸嗌倜麑W生參加體育晨跑天數(shù)不少于7天?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在平面直角坐標系中,拋物線y=ax2-2ax+3與x軸交于點A,B(點A在點B的左側(cè)),交y軸于點C,點A的坐標為(-1,0),點D為拋物線的頂點,對稱軸與x軸交于點E.
(1)填空:a= ,點B的坐標是 ;
(2)連結(jié)BD,點M是線段BD上一動點(點M不與端點B,D重合),過點M作MN⊥BD,交拋物線于點N(點N在對稱軸的右側(cè)),過點N作NH⊥x軸,垂足為H,交BD于點F,點P是線段OC上一動點,當△MNF的周長取得最大值時,求FP+PC的最小值;
(3)在(2)中,當△MNF的周長取得最大值時,FP+PC取得最小值時,如圖2,把點P向下平移個單位得到點Q,連結(jié)AQ,把△AOQ繞點O順時針旋轉(zhuǎn)一定的角度α(0°<α<360°),得到△A′OQ′,其中邊A′Q′交坐標軸于點G.在旋轉(zhuǎn)過程中,是否存在一點G,使得GQ′=OG?若存在,請直接寫出所有滿足條件的點Q′的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校為了解學生對中國民族樂器的喜愛情況,隨機抽取了本校的部分學生進行調(diào)查(每名學生選擇并且只能選擇一種喜愛樂器),現(xiàn)將收集到的數(shù)據(jù)繪制如下的兩幅不完整的統(tǒng)計圖.
(1)這次共抽取 學生進行調(diào)查,扇形統(tǒng)計圖中的 .
(2)請補全統(tǒng)計圖;
(3)在扇形統(tǒng)計圖中“揚琴”所對扇形的圓心角是 度;
(4)若該校有3000名學生,請你估計該校喜愛“二胡”的學生約有 名.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校就“遇見路人摔倒后如何處理”的問題,隨機抽取該校部分學生進行問卷調(diào)查,圖1和圖2是整理數(shù)據(jù)后繪制的兩幅不完整的統(tǒng)計圖. 請根據(jù)圖中提供的信息,解答下列問題:
(1)該校隨機抽查了 名學生?請將圖1補充完整;
(2)在圖2中,“視情況而定”部分所占的圓心角是 度;
(3)在這次調(diào)查中,甲、乙、丙、丁四名學生都選擇“馬上救助”,現(xiàn)準備從這四人中隨機抽取兩人進行座談,試用列表或樹形圖的方法求抽取的兩人恰好是甲和乙的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校組織了2000名學生參加“愛我中華”知識競賽活動,為了了解本次知識競賽的成績分布情況,從中抽取了部分學生的得分進行統(tǒng)計:
成績(分) | 頻數(shù) | 頻率 |
20 | ||
16 | 0.08 | |
0.15 |
請你根據(jù)以上的信息,回答下列問題:
(1) , ;
(2)在扇形統(tǒng)計圖中,“成績滿足”對應扇形的圓心角的度數(shù)是 ;
(3)若將得分轉(zhuǎn)化為等級,規(guī)定:評為,評為,評為,評為.這次全校參加競賽的學生約有 人參賽成績被評為“”.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,直線y=4x+4與x軸、y軸分別交于點A,B,拋物線y=ax2+bx-3a經(jīng)過點A,將點B向右平移5個單位長度得到點C.若拋物線與線段BC恰有一個公共點,結(jié)合函數(shù)圖象,a的取值范圍是__________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com