【題目】函數(shù)f(x)=Asin(ωx+φ)(ω>0, )的部分圖象如圖所示,將函數(shù)f(x)的圖象向右平移 個(gè)單位后得到函數(shù)g(x)的圖象,若函數(shù)g(x)在區(qū)間 )上的值域?yàn)閇﹣1,2],則θ等于(
A.
B.
C.
D.

【答案】B
【解析】解:根據(jù)函數(shù)f(x)=Asin(ωx+φ)(ω>0, )的部分圖象, 可得A=﹣2, = = ,∴ω=2.
再根據(jù)五點(diǎn)法作圖可得2 +φ=π,∴φ= ,f(x)=﹣2sin(2x+ ).
將函數(shù)f(x)的圖象向右平移 個(gè)單位后得到函數(shù)g(x)=﹣2sin(2x﹣ + )=﹣2sin(2x﹣ )的圖象,
若函數(shù)g(x)在區(qū)間 )上,2x﹣ ∈[﹣π,2θ﹣ ],
由于g(x)的值域?yàn)閇﹣1,2],故﹣2sin(2x﹣ )的最小值為﹣1,
此時(shí),sin(2θ﹣ )= ,則2θ﹣ = ,求得θ= ,
故選:B.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解函數(shù)y=Asin(ωx+φ)的圖象變換(圖象上所有點(diǎn)向左(右)平移個(gè)單位長(zhǎng)度,得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)(縮短)到原來的倍(縱坐標(biāo)不變),得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的縱坐標(biāo)伸長(zhǎng)(縮短)到原來的倍(橫坐標(biāo)不變),得到函數(shù)的圖象).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某數(shù)學(xué)興趣小組要測(cè)量一棟五層居民樓CD的高度.該樓底層為車庫(kù),高2.5米;上面五層居住,每層高度相等.測(cè)角儀支架離地1.5米,在A處測(cè)得五樓頂部點(diǎn)D的仰角為60°,在B處測(cè)得四樓頂點(diǎn)E的仰角為30°,AB=14米.求居民樓的高度(精確到0.1米,參考數(shù)據(jù): ≈1.73)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】設(shè)二次函數(shù)y=x2+ax+b圖像與x軸有2個(gè)交點(diǎn),A(x1,0),B(x2,0);且0< x1<1;1< x2<2,那么(1)a的取值范圍是;b的取值范圍是;則(2) 的取值范圍是.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】利用如圖算法在平面直角坐標(biāo)系上打印一系列點(diǎn),則打印的點(diǎn)在圓x2+y2=25內(nèi)的個(gè)數(shù)為(
A.2
B.3
C.4
D.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C: + =1(a>0,b>0)的離心率為 ,右焦點(diǎn)為F,上頂點(diǎn)為A,且△AOF的面積為 (O為坐標(biāo)原點(diǎn)).

(1)求橢圓C的方程;
(2)設(shè)P是橢圓C上的一點(diǎn),過P的直線與以橢圓的短軸為直徑的圓切于第一象限內(nèi)的一點(diǎn)M,證明:|PF|+|PM|為定值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校100名學(xué)生期中考試語(yǔ)文成績(jī)的頻率分布直方圖如圖所示,其中成績(jī)分組區(qū)間是:[50,60),[60,70),[70,80),[80,90),[90,100].
(1)求圖中a的值;
(2)根據(jù)頻率分布直方圖,估計(jì)這100名學(xué)生語(yǔ)文成績(jī)的平均分;
(3)若這100名學(xué)生語(yǔ)文成績(jī)某些分?jǐn)?shù)段的人數(shù)(x)與數(shù)學(xué)成績(jī)相應(yīng)分?jǐn)?shù)段的人數(shù)(y)之比如表所示,求數(shù)學(xué)成績(jī)?cè)赱50,90)之外的人數(shù).

分?jǐn)?shù)段

[50,60)

[60,70)

[70,80)

[80,90)

x:y

1:1

2:1

3:4

4:5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x3+ax2+bx有兩個(gè)極值點(diǎn)x1、x2 , 且x1<x2 , 若x1+2x0=3x2 , 函數(shù)g(x)=f(x)﹣f(x0),則g(x)(
A.恰有一個(gè)零點(diǎn)
B.恰有兩個(gè)零點(diǎn)
C.恰有三個(gè)零點(diǎn)
D.至多兩個(gè)零點(diǎn)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將圓 為參數(shù))上的每一點(diǎn)的橫坐標(biāo)保持不變,縱坐標(biāo)變?yōu)樵瓉淼? 倍,得到曲線C.
(1)求出C的普通方程;
(2)設(shè)直線l:x+2y﹣2=0與C的交點(diǎn)為P1 , P2 , 以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系, 求過線段P1P2的中點(diǎn)且與l垂直的直線的極坐標(biāo)方程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xoy中,已知點(diǎn)P(0, ),曲線C的參數(shù)方程為 (φ為參數(shù)).以原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為ρ= . (Ⅰ)判斷點(diǎn)P與直線l的位置關(guān)系并說明理由;
(Ⅱ)設(shè)直線l與曲線C的兩個(gè)交點(diǎn)分別為A,B,求 + 的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案