【題目】如圖,在RtABC中,∠ACB90°,∠BAC30°,EAB邊的中點(diǎn),以BE為邊作等邊BDE,連接ADCD

1)求證:ADE≌△CDB;

2)若BC1,在AC邊上找一點(diǎn)H,使得BH+EH最小,并求出這個最小值.

【答案】(1)見解析;(2)

【解析】

1)根據(jù)等邊三角形的性質(zhì),三邊相等,各角為60°,與直角三角形的性質(zhì),和斜邊上的中線等于斜邊的一半的定理,可得AEDEDBBC,∠DBC=∠AED120°,即可證明.

2)根據(jù)軸對稱的性質(zhì)和兩點(diǎn)之間線段最短的公理,做出B點(diǎn)關(guān)于AC的對稱點(diǎn)B′, 連接B′E,通過計算求出即可.

如圖:

1)在RtABC中,∠ACB90°,∠BAC30°,

BCAB.∠ABC60°

EAB邊的中點(diǎn),

AEBE

∵△BDE是等邊三角形,

BEBDDE,∠DBE=∠DEB60°,

AEDEDBBC,∠DBC=∠AED120°,

∴△ADE≌△CDBSAS).

2)作點(diǎn)B關(guān)于AC的對稱點(diǎn)B,連接BEAC于點(diǎn)H,

此時BHBH,BEBH+HEBH+HE最。

BC1,BB′2,∴B′H

答:這個最小值為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=﹣(x﹣h)2(h為常數(shù)),當(dāng)自變量x的值滿足2≤x≤5時,與其對應(yīng)的函數(shù)值y的最大值為﹣1,則h的值為(

A. 36 B. 16 C. 13 D. 46

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,∠A=∠B60°,∠ADC90°,∠BCD150°,點(diǎn)EAB邊上一點(diǎn),DEAB,ECBC

1)試判斷DEC的形狀,并說明理由.

2)若BC3,BE6.求ABAD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分8分)某商家預(yù)測一種應(yīng)季襯衫能暢銷市場,就用13200元購進(jìn)了一批這種襯衫,面市后果然供不應(yīng)求.商家又用28800元購進(jìn)了第二批這種襯衫,所購數(shù)量是第一批購進(jìn)量的2倍,但單價貴了10元.

1)該商家購進(jìn)的第一批襯衫是多少件?

2)若兩批襯衫按相同的標(biāo)價銷售,最后剩下50件按八折優(yōu)惠賣出,如果兩批襯衫全部售完后利潤率不低于25%(不考慮其它因素),那么每件襯衫的標(biāo)價至少是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知x=1是一元二次方程(m+1)x-mx+2m+3=0的一個根。

(1)求m的值,并寫出此時的一元二次方程的一般形式

(2)把方程兩根分別記為,,不解方程,求的值。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果任意選擇一對有序整數(shù)(m,n),其中|m|≤1,|n|≤3,每一對這樣的有序整數(shù)被選擇的可能性是相等的,那么關(guān)于x的方程x2+nx+m=0有兩個相等實(shí)數(shù)根的概率是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一枚質(zhì)地均勻的正四面體骰子,它有四個面并分別標(biāo)有數(shù)字,,,,如圖,正方形頂點(diǎn)處各有一個圈.跳圈游戲的規(guī)則為:游戲者每擲一次骰子,骰子著地一面上的數(shù)字是幾,就沿正方形的邊順時針方向連續(xù)跳幾個邊長.如:若從圖起跳,第一次擲得,就順時針連續(xù)跳個邊長,落到圈;若第二次擲得,就從開始順時針連續(xù)跳個邊長,落到圈;設(shè)游戲者從圈起跳.

)嘉嘉隨機(jī)擲一次骰子,求落回到圈的概率

淇淇隨機(jī)擲兩次骰子,用列表法求最后落回到圈的概率,并指出她與嘉嘉落回到圈的可能性一樣嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為加強(qiáng)校園陽光體育活動,某中學(xué)計劃購進(jìn)一批籃球和排球,經(jīng)過調(diào)查得知每個籃球的價格比每個排球的價格貴40元,買5個籃球和10個排球共用1100元.

1)求每個籃球和排球的價格分別是多少?

2)某學(xué)校需購進(jìn)籃球和排球共120個,總費(fèi)用不超過9000元,但不低于8900元,問有幾種購買方案?最低費(fèi)用是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在銳角△ABC中,AC10,SABC 25,∠BAC的平分線交BC于點(diǎn)D,點(diǎn)MN分別是ADAB上的動點(diǎn),則BMMN的最小值是( )

A. 4 B. C. 5 D. 6

查看答案和解析>>

同步練習(xí)冊答案