如圖,拋物線y=x2-2mx+n+1的頂點(diǎn)A在x軸負(fù)半軸上,與y軸交于點(diǎn)B,C是拋物線上一點(diǎn),且點(diǎn)C的橫坐標(biāo)為1,AC=3
10

(1)求拋物線的函數(shù)關(guān)系式;
(2)若D是拋物線上一點(diǎn),直線BD經(jīng)過第一、二、四象限,且原點(diǎn)O到直線BD的距離為
8
5
5
,求點(diǎn)D的坐標(biāo);
(3)在(2)的條件下,直線BD上是否存在點(diǎn)P,使得以A、B、P為頂點(diǎn)的三角形與△AOB相似?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.
(1)過點(diǎn)C作CE⊥x軸于點(diǎn)E,如圖,
∵拋物線上一點(diǎn)C的橫坐標(biāo)為1,
∴C(1,n-2m+2),
其中n-2m+2>0,OE=1,CE=n-2m+2;
∵拋物線的頂點(diǎn)A在x軸負(fù)半軸上,
∴A(m,0),△=4m2-4(n+1)=0,得n=m2-1①,
其中m<0,OA=-m,AE=OE+OA=1-m,
在Rt△ACE中,AC=3
10

∵AE2+CE2=AC2,
∴(1-m)2+(n-2m+2)2=(3
10
2②,
把①代入②得[(m-1)2]2+(m-1)2-90=0,
∴[(m-1)2+10][(m-1)2-9]=0,
∴(m-1)2-9=0
∴m1=4,m2=-2,
∵m<0,
∴m=-2.
把m=-2代入①,得n=4-1=3,
∴拋物線的關(guān)系式為y=x2+4x+4;
(2)設(shè)直線DB交x軸正半軸于點(diǎn)F,過點(diǎn)O作OM⊥DB于點(diǎn)M,如圖,
∵點(diǎn)O到直線DB的距離為
8
5
5
,
∴OM=
8
5
5

而B點(diǎn)坐標(biāo)為(0,4),
∴OB=4,
∴BM=
OB2-OM2
=
4
5
5
;
∵OB⊥OF,OM⊥BF,
∴△OBM△FOM,
OM
BM
=
OF
BO
,即
OF
4
=
8
5
5
4
5
5
,
∴OF=8,
∴F點(diǎn)坐標(biāo)為(8,0),
設(shè)直線DB的解析式為y=kx+b,
把F(8,0)、B(0,4)代入得
8k+b=0
b=4
,解得
k=-
1
2
b=4
,
∴直線DB的解析式為y=-
1
2
x+4,
解方程組
y=x2+4x+4
y=-
1
2
x+4
x=0
y=4
x=-
9
2
y=
25
4
,
∴D點(diǎn)坐標(biāo)為(-
9
2
,
25
4
);
(3)存在.理由如下:
∵OB=4,OF=8,
∴BF=
OB2+OF2
=4
5
,
∵y=(x+2)2
∴A點(diǎn)坐標(biāo)為(-2,0),
∴OA=2,
而OB=4,
∴AB=
OB2+OA2
=2
5

∴OA:OB=OB:OF,
∴△OAB△OBF,
∴∠AOB=∠OFB,
∴∠ABF=∠ABO+∠OBF=∠OFB+∠OBF=90°,
∴△ABF△AOB,
此時(shí)P1在F點(diǎn)位置,符號(hào)要求,P1點(diǎn)的坐標(biāo)為(8,0);
當(dāng)△ABP2△BOA時(shí),
則BP2:OA=AB:BO,即BP2:2=2
5
:4,
∴BP2=
5
,
過P2作P2H⊥x軸于H,如圖,
∴OH:OF=BP2:BF,即OH:8=
5
:4
5
,
∴OH=2,
把x=2代入y=-
1
2
x+4得y=-
1
2
×2+4=2,
∴P2的坐標(biāo)為(2,2);
當(dāng)△ABP3△BOA時(shí),同樣得到BP3=
5

∴P3A⊥OA,
∴P3的橫坐標(biāo)為-2,
把x=-2代入y=-
1
2
x+4得y=-
1
2
×(-2)+4=5,
∴P3的坐標(biāo)為(-2,6);
當(dāng)△ABP4△AOB時(shí),
則BP4:OB=AB:AO,即BP4:4=2
5
:2,
∴BP4=4
5
,
過P4作P4Q⊥y軸于Q,如圖,
易證得△P4QB≌△FOB,
∴P4Q=8,
把x=-8代入y=-
1
2
x+4得y=-
1
2
×(-8)+4=8,
∴P4的坐標(biāo)為(-8,8),
∴滿足條件的P點(diǎn)坐標(biāo)為(-8,8)、(-2,5)、(2,2)、(8,0).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,等腰直角三角形紙片ABC中,AC=BC=4,∠ACB=90°,直角邊AC在x軸上,B點(diǎn)在第二象限,A(1,0),AB交y軸于E,將紙片過E點(diǎn)折疊使BE與EA所在直線重合,得到折痕EF(F在x軸上),再展開還原沿EF剪開得到四邊形BCFE,然后把四邊形BCFE從E點(diǎn)開始沿射線EA平移,至B點(diǎn)到達(dá)A點(diǎn)停止.設(shè)平移時(shí)間為t(s),移動(dòng)速度為每秒1個(gè)單位長度,平移中四邊形BCFE與△AEF重疊的面積為S.
(1)求折痕EF的長;
(2)是否存在某一時(shí)刻t使平移中直角頂點(diǎn)C經(jīng)過拋物線y=x2+4x+3的頂點(diǎn)?若存在,求出t值;若不存在,請(qǐng)說明理由;
(3)直接寫出S與t的函數(shù)關(guān)系式及自變量t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線y=-
1
4
x2+x+3
與x軸相交于點(diǎn)A、B,與y軸相交于點(diǎn)C,頂點(diǎn)為點(diǎn)D,對(duì)稱軸l與直線BC相交于點(diǎn)E,與x軸相交于點(diǎn)F.
(1)求直線BC的解析式;
(2)設(shè)點(diǎn)P為該拋物線上的一個(gè)動(dòng)點(diǎn),以點(diǎn)P為圓心,r為半徑作⊙P
①當(dāng)點(diǎn)P運(yùn)動(dòng)到點(diǎn)D時(shí),若⊙P與直線BC相交,求r的取值范圍;
②若r=
4
5
5
,是否存在點(diǎn)P使⊙P與直線BC相切?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.
提示:拋物線y=ax2+bx+x(a≠0)的頂點(diǎn)坐標(biāo)(-
b
2a
,
4ac-b2
4a
),對(duì)稱軸x=-
b
2a

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線的頂點(diǎn)坐標(biāo)是(
5
2
,-
9
8
)
,且經(jīng)過點(diǎn)A(8,14).
(1)求該拋物線的解析式;
(2)設(shè)該拋物線與y軸相交于點(diǎn)B,與x軸相交于C、D兩點(diǎn)(點(diǎn)C在點(diǎn)D的左邊),試求點(diǎn)B、C、D的坐標(biāo);
(3)設(shè)點(diǎn)P是x軸上的任意一點(diǎn),分別連接AC、BC.試判斷:PA+PB與AC+BC的大小關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

某果園有100棵橘子樹,平均每一棵樹結(jié)600個(gè)橘子.根據(jù)經(jīng)驗(yàn)估計(jì),每多種一顆樹,平均每棵樹就會(huì)少結(jié)5個(gè)橘子.設(shè)果園增種x棵橘子樹,果園橘子總個(gè)數(shù)為y個(gè),則果園里增種______棵橘子樹,橘子總個(gè)數(shù)最多.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某施工單位計(jì)劃用地磚鋪設(shè)正方形廣場(chǎng)地面ABCD(如圖所示),廣場(chǎng)四角白色區(qū)域?yàn)檎叫,陰影部分為四個(gè)矩形,四個(gè)矩形的寬都等于正方形的邊長,陰影部分鋪綠色地磚,其余部分鋪白色地磚.已知
AB=100m,設(shè)小正方形的邊長為xm.
(1)鋪綠色地磚的面積為______m2;鋪白色地磚的面積為______m2(用含x的代數(shù)式表示);
(2)若鋪綠色地磚的費(fèi)用為每平方米20元,鋪白色地磚的費(fèi)用為每平方米30元,設(shè)鋪廣場(chǎng)地面的總費(fèi)用為y元,求y關(guān)于x的函數(shù)解析式,并求所需的最低費(fèi)用.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在Rt△ABC中,點(diǎn)P由C點(diǎn)出發(fā)以1cm/s向A勻速運(yùn)動(dòng),同時(shí)點(diǎn)Q從B點(diǎn)出發(fā)以2cm/s向C點(diǎn)勻速移動(dòng),已知AC=4cm,BC=12cm,
(1)若記Q點(diǎn)的移動(dòng)時(shí)間為t,試用含有t的代數(shù)式表示Rt△PCQ與四邊形PQBA的面積;
(2)當(dāng)P、Q處在什么位置時(shí),四邊形PQBA的面積最小,并求最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,水平地面的A、B兩點(diǎn)處有兩棵筆直的大樹相距2米,小明的父親在這兩棵樹間拴了一根繩子,給他做了一個(gè)簡(jiǎn)易的秋千.拴繩子的地方距地面高都是2.5米,繩子自然下垂呈拋物線狀,身高1米的小明距較近的那棵樹0.5米時(shí),頭部剛好接觸到繩子.
(1)請(qǐng)完成如下操作:以AB所在直線為x軸、線段AB的垂直平分線為y軸,建立平面直角坐標(biāo)系,根據(jù)題中提供的信息,求繩子所在拋物線的函數(shù)關(guān)系式;
(2)求繩子的最低點(diǎn)離地面的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,⊙O的半徑為2,C1是函數(shù)的y=
1
2
x2
的圖象,C2是函數(shù)的y=-
1
2
x2
的圖象,C3是函數(shù)的y=x的圖象,則陰影部分的面積是______.

查看答案和解析>>

同步練習(xí)冊(cè)答案