某施工單位計(jì)劃用地磚鋪設(shè)正方形廣場地面ABCD(如圖所示),廣場四角白色區(qū)域?yàn)檎叫危幱安糠譃樗膫矩形,四個矩形的寬都等于正方形的邊長,陰影部分鋪綠色地磚,其余部分鋪白色地磚.已知
AB=100m,設(shè)小正方形的邊長為xm.
(1)鋪綠色地磚的面積為______m2;鋪白色地磚的面積為______m2(用含x的代數(shù)式表示);
(2)若鋪綠色地磚的費(fèi)用為每平方米20元,鋪白色地磚的費(fèi)用為每平方米30元,設(shè)鋪廣場地面的總費(fèi)用為y元,求y關(guān)于x的函數(shù)解析式,并求所需的最低費(fèi)用.
(1)鋪綠色地磚的面積為:4x(100-2x)=-8x2+400x;則鋪白色地磚的面積為10000-4x(100-2x)=8x2-400x+10000;

(2)y=30×(8x2-400x+10000)+20×(-8x2+400x)=80x2-4000x+300000=80(x-25)2+250000,
當(dāng)x=25時(shí),y最小,y最小=250000元.
答:y=80(x-25)2+250000,最低費(fèi)用為250000元.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知拋物線經(jīng)過A(-2,0),B(-3,3)及原點(diǎn)O,頂點(diǎn)為C.
(1)求拋物線的解析式;
(2)若點(diǎn)D在拋物線上,點(diǎn)E在拋物線的對稱軸上,且A、O、D、E為頂點(diǎn)的四邊形是平行四邊形,求點(diǎn)D的坐標(biāo);
(3)P是拋物線上的第一象限內(nèi)的動點(diǎn),過點(diǎn)P作PM⊥x軸,垂足為M,是否存在點(diǎn)P,使得以P、M、A為頂點(diǎn)的三角形△BOC相似?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線y=
1
2
x2+mx+n過原點(diǎn)O,與x軸交于A,點(diǎn)D(4,2)在該拋物線上,過點(diǎn)D作CDx軸,交拋物線于點(diǎn)C,交y軸于點(diǎn)B,連接CO、AD.
(1)求C點(diǎn)的坐標(biāo)及拋物線的解析式;
(2)將△BCO繞點(diǎn)O按順時(shí)針旋轉(zhuǎn)90°后再沿x軸對折得到△OEF(點(diǎn)C與點(diǎn)E對應(yīng)),判斷點(diǎn)E是否落在拋物線上,并說明理由;
(3)設(shè)過點(diǎn)E的直線交OA于點(diǎn)P,交CD邊于點(diǎn)Q.問是否存在點(diǎn)P,使直線PQ分梯形AOCD的面積為1:3兩部分?若存在,求出P點(diǎn)坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,四邊形OABC是矩形,OA=4,OC=8,將矩形OABC沿直線AC折疊,使點(diǎn)B落在D處,AD交OC于E.
(1)求OE的長;
(2)求過O,D,C三點(diǎn)拋物線的解析式;
(3)若F為過O,D,C三點(diǎn)拋物線的頂點(diǎn),一動點(diǎn)P從點(diǎn)A出發(fā),沿射線AB以每秒1個單位長度的速度勻速運(yùn)動,當(dāng)運(yùn)動時(shí)間t(秒)為何值時(shí),直線PF把△FAC分成面積之比為1:3的兩部分.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

拋物線y=a(x+6)2-3與x軸相交于A,B兩點(diǎn),與y軸相交于C,D為拋物線的頂點(diǎn),直線DE⊥x軸,垂足為E,AE2=3DE.
(1)求這個拋物線的解析式;
(2)P為直線DE上的一動點(diǎn),以PC為斜邊構(gòu)造直角三角形,使直角頂點(diǎn)落在x軸上.若在x軸上的直角頂點(diǎn)只有一個時(shí),求點(diǎn)P的坐標(biāo);
(3)M為拋物線上的一動點(diǎn),過M作直線MN⊥DM,交直線DE于N,當(dāng)M點(diǎn)在拋物線的第二象限的部分上運(yùn)動時(shí),是否存在使點(diǎn)E三等分線段DN的情況?若存在,請求出所有符合條件的M的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線y=x2-2mx+n+1的頂點(diǎn)A在x軸負(fù)半軸上,與y軸交于點(diǎn)B,C是拋物線上一點(diǎn),且點(diǎn)C的橫坐標(biāo)為1,AC=3
10

(1)求拋物線的函數(shù)關(guān)系式;
(2)若D是拋物線上一點(diǎn),直線BD經(jīng)過第一、二、四象限,且原點(diǎn)O到直線BD的距離為
8
5
5
,求點(diǎn)D的坐標(biāo);
(3)在(2)的條件下,直線BD上是否存在點(diǎn)P,使得以A、B、P為頂點(diǎn)的三角形與△AOB相似?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知拋物線y=x2+bx+c經(jīng)過點(diǎn)(1,-5)和(-2,4)
(1)求這條拋物線的解析式;
(2)設(shè)此拋物線與直線y=x相交于點(diǎn)A,B(點(diǎn)B在點(diǎn)A的右側(cè)),平行于y軸的直線x=m(0<m<
5
+1)與拋物線交于點(diǎn)M,與直線y=x交于點(diǎn)N,交x軸于點(diǎn)P,求線段MN的長(用含m的代數(shù)式表示);
(3)在條件(2)的情況下,連接OM、BM,是否存在m的值,使△BOM的面積S最大?若存在,請求出m的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某果園有100棵橙子樹,每一棵樹平均結(jié)600個橙子,現(xiàn)準(zhǔn)備多種一些橙子樹以提高產(chǎn)量.根據(jù)經(jīng)驗(yàn)估計(jì),每多種一棵橙樹,平均每棵樹就會少結(jié)5個橙子.
(1)寫出果園橙子的總產(chǎn)量y(個)與增種橙樹的棵數(shù)x(棵)的函數(shù)關(guān)系式;
(2)求出當(dāng)x取何值時(shí)y的值最大?y的值最大是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某商場試銷一種成本為每件60元的服裝,經(jīng)試銷發(fā)現(xiàn),銷售量y(件)與銷售單價(jià)x(元)符合一次函數(shù)y=kx+b,且x=65時(shí),y=55;x=75時(shí),y=45.
(1)求一次函數(shù)y=kx+b的表達(dá)式;
(2)若該商場獲得利潤為W元,試寫出利潤W與銷售單價(jià)x之間的關(guān)系式;
(3)銷售單價(jià)定為多少元時(shí),商場可獲得最大利潤,最大利潤是多少元?

查看答案和解析>>

同步練習(xí)冊答案