某果園有100棵橙子樹(shù),每一棵樹(shù)平均結(jié)600個(gè)橙子,現(xiàn)準(zhǔn)備多種一些橙子樹(shù)以提高產(chǎn)量.根據(jù)經(jīng)驗(yàn)估計(jì),每多種一棵橙樹(shù),平均每棵樹(shù)就會(huì)少結(jié)5個(gè)橙子.
(1)寫(xiě)出果園橙子的總產(chǎn)量y(個(gè))與增種橙樹(shù)的棵數(shù)x(棵)的函數(shù)關(guān)系式;
(2)求出當(dāng)x取何值時(shí)y的值最大?y的值最大是多少?
(1)假設(shè)果園增種x棵橙子樹(shù),那么果園共有(x+100)棵橙子樹(shù),
∵每多種一棵樹(shù),平均每棵樹(shù)就會(huì)少結(jié)5個(gè)橙子,
∴這時(shí)平均每棵樹(shù)就會(huì)少結(jié)5x個(gè)橙子,
則平均每棵樹(shù)結(jié)(600-5x)個(gè)橙子.
∵果園橙子的總產(chǎn)量為y,
∴則y=(x+100)(600-5x)
=-5x2+100x+60000,

(2)∵y=(x+100)(600-5x)
=-5x2+100x+60000,
∴當(dāng)x=-
b
2a
=-
100
2×(-5)
=10棵,
y最大=
4ac-b2
4a
=60500個(gè).
∴當(dāng)增種橙樹(shù)的棵數(shù)x取10棵時(shí)y的值最大,y的值最大是60500個(gè).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+c經(jīng)過(guò)A(-2,-4),O(0,0),B(2,0)三點(diǎn).
(1)求拋物線y=ax2+bx+c的解析式;
(2)若點(diǎn)M是該拋物線對(duì)稱軸上的一點(diǎn),求AM+OM的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知二次函數(shù)y=ax2+bx+8(a≠0)的圖象與x軸交與A,B兩點(diǎn),與y軸交與點(diǎn)C,已知點(diǎn)A的坐標(biāo)為(-2,0),sin∠ABC=
2
5
5
,點(diǎn)D是拋物線的頂點(diǎn),直線DC交x軸于點(diǎn)E.
(1)求拋物線的解析式及其頂點(diǎn)D的坐標(biāo);
(2)在直線CD上是否存在一點(diǎn)Q,使以B,C,Q為頂點(diǎn)的三角形是等腰三角形?若存在,請(qǐng)直接寫(xiě)出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)點(diǎn)P是直線y=2x-4上一點(diǎn),過(guò)點(diǎn)P作直線PM垂直于直線CD,垂足為M,若∠MPO=75°,求出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知二次函數(shù)圖象的頂點(diǎn)坐標(biāo)為C(1,1),直線y=kx+m的圖象與該二次函數(shù)的圖象交于A、B兩點(diǎn),其中A點(diǎn)坐標(biāo)為(
5
2
13
4
),B點(diǎn)在y軸上,直線與x軸的交點(diǎn)為F,P為線段AB上的一個(gè)動(dòng)點(diǎn)(點(diǎn)P與A、B不重合),過(guò)P作x軸的垂線與這個(gè)二次函數(shù)的圖象交于E點(diǎn).
(1)求k,m的值及這個(gè)二次函數(shù)的解析式;
(2)設(shè)線段PE的長(zhǎng)為h,點(diǎn)P的橫坐標(biāo)為x,求h與x之間的函數(shù)關(guān)系式,并寫(xiě)出自變量x的取值范圍;
(3)D為直線AB與這個(gè)二次函數(shù)圖象對(duì)稱軸的交點(diǎn),在線段AB上是否存在點(diǎn)P,使得以點(diǎn)P、E、D為頂點(diǎn)的三角形與△BOF相似?若存在,請(qǐng)求出P點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,等腰直角三角形紙片ABC中,AC=BC=4,∠ACB=90°,直角邊AC在x軸上,B點(diǎn)在第二象限,A(1,0),AB交y軸于E,將紙片過(guò)E點(diǎn)折疊使BE與EA所在直線重合,得到折痕EF(F在x軸上),再展開(kāi)還原沿EF剪開(kāi)得到四邊形BCFE,然后把四邊形BCFE從E點(diǎn)開(kāi)始沿射線EA平移,至B點(diǎn)到達(dá)A點(diǎn)停止.設(shè)平移時(shí)間為t(s),移動(dòng)速度為每秒1個(gè)單位長(zhǎng)度,平移中四邊形BCFE與△AEF重疊的面積為S.
(1)求折痕EF的長(zhǎng);
(2)是否存在某一時(shí)刻t使平移中直角頂點(diǎn)C經(jīng)過(guò)拋物線y=x2+4x+3的頂點(diǎn)?若存在,求出t值;若不存在,請(qǐng)說(shuō)明理由;
(3)直接寫(xiě)出S與t的函數(shù)關(guān)系式及自變量t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,正方形ABCD的邊長(zhǎng)是4,E是AB邊上一點(diǎn)(E不與A、B重合),F(xiàn)是AD的延長(zhǎng)線上一點(diǎn),DF=2BE.四邊形AEGF是句型,其面積y隨BE的長(zhǎng)x的變化而變化且構(gòu)成函數(shù).
(1)求y與x之間的函數(shù)關(guān)系式,并寫(xiě)出自變量x的取值范圍;
(2)若上述(1)中是二次函數(shù),請(qǐng)用配方法把它轉(zhuǎn)化成y=a(x-h)2+k的形式,并指出當(dāng)x取何值時(shí),y取得最大(或最。┲担撝凳嵌嗌?
(3)直接寫(xiě)出拋物線與x軸交點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖拋物線y=-
3
3
x2-
2
3
3
x+
3
,x軸于A、B兩點(diǎn),交y軸于點(diǎn)C,頂點(diǎn)為D.
(1)求A、B、C的坐標(biāo);
(2)把△ABC繞AB的中點(diǎn)M旋轉(zhuǎn)180°,得到四邊形AEBC:
①求E點(diǎn)坐標(biāo);
②試判斷四邊形AEBC的形狀,并說(shuō)明理由;
(3)試探索:在直線BC上是否存在一點(diǎn)P,使得△PAD的周長(zhǎng)最?若存在,請(qǐng)求出P點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在直角坐標(biāo)平面中,O為坐標(biāo)原點(diǎn),二次函數(shù)y=x2+bx+c的圖象與y軸的負(fù)半軸相交于點(diǎn)C,點(diǎn)C的坐標(biāo)為(0,-3),且BO=CO.
(1)求出B點(diǎn)坐標(biāo)和這個(gè)二次函數(shù)的解析式;
(2)求出y隨x的增大而減小的自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某施工單位計(jì)劃用地磚鋪設(shè)正方形廣場(chǎng)地面ABCD(如圖所示),廣場(chǎng)四角白色區(qū)域?yàn)檎叫,陰影部分為四個(gè)矩形,四個(gè)矩形的寬都等于正方形的邊長(zhǎng),陰影部分鋪綠色地磚,其余部分鋪白色地磚.已知
AB=100m,設(shè)小正方形的邊長(zhǎng)為xm.
(1)鋪綠色地磚的面積為_(kāi)_____m2;鋪白色地磚的面積為_(kāi)_____m2(用含x的代數(shù)式表示);
(2)若鋪綠色地磚的費(fèi)用為每平方米20元,鋪白色地磚的費(fèi)用為每平方米30元,設(shè)鋪廣場(chǎng)地面的總費(fèi)用為y元,求y關(guān)于x的函數(shù)解析式,并求所需的最低費(fèi)用.

查看答案和解析>>

同步練習(xí)冊(cè)答案