精英家教網 > 初中數學 > 題目詳情

【題目】凱里市某文具店某種型號的計算器每只進價12元,售價20元,多買優(yōu)惠,優(yōu)勢方法是:凡是一次買10只以上的,每多買一只,所買的全部計算器每只就降價0.1元,例如:某人買18只計算器,于是每只降價0.1×(18﹣10)=0.8(元),因此所買的18只計算器都按每只19.2元的價格購買,但是每只計算器的最低售價為16元.
(1)求一次至少購買多少只計算器,才能以最低價購買?
(2)求寫出該文具店一次銷售x(x>10)只時,所獲利潤y(元)與x(只)之間的函數關系式,并寫出自變量x的取值范圍;
(3)一天,甲顧客購買了46只,乙顧客購買了50只,店主發(fā)現賣46只賺的錢反而比賣50只賺的錢多,請你說明發(fā)生這一現象的原因;當10<x≤50時,為了獲得最大利潤,店家一次應賣多少只?這時的售價是多少?

【答案】
(1)解:設一次購買x只,

則20﹣0.1(x﹣10)=16,

解得:x=50.

答:一次至少買50只,才能以最低價購買


(2)解:當10<x≤50時,

y=[20﹣0.1(x﹣10)﹣12]x=﹣0.1x2+9x,

當x>50時,y=(16﹣12)x=4x;

綜上所述:y=


(3)解:y=﹣0.1x2+9x=﹣0.1(x﹣45)2+202.5,

①當10<x≤45時,y隨x的增大而增大,即當賣的只數越多時,利潤更大.

②當45<x≤50時,y隨x的增大而減小,即當賣的只數越多時,利潤變。

且當x=46時,y1=202.4,

當x=50時,y2=200.

y1>y2

即出現了賣46只賺的錢比賣50只賺的錢多的現象.

當x=45時,最低售價為20﹣0.1(45﹣10)=16.5(元),此時利潤最大


【解析】本題考查了二次函數的應用.最大銷售利潤的問題常利函數的增減性來解答,我們首先要吃透題意,確定變量,建立函數模型,然后結合實際選擇最優(yōu)方案.其中要注意應該在自變量的取值范圍內求最大值(或最小值),也就是說二次函數的最值不一定在x=﹣ 時取得.(1)設一次購買x只,由于凡是一次買10只以上的,每多買一只,所買的全部計算器每只就降低0.10元,而最低價為每只16元,因此得到20﹣0.1(x﹣10)=16,解方程即可求解;(2)由于根據(1)得到x≤50,又一次銷售x(x>10)只,因此得到自變量x的取值范圍,然后根據已知條件可以得到y(tǒng)與x的函數關系式;(3)首先把函數變?yōu)閥=﹣0.1x2+9x=﹣0.1(x﹣45)2+202.5,然后可以得到函數的增減性,再結合已知條件即可解決問題.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,已知直線l:y=﹣x,雙曲線y= ,在l上取一點A(a,﹣a)(a>0),過A作x軸的垂線交雙曲線于點B,過B作y軸的垂線交l于點C,過C作x軸的垂線交雙曲線于點D,過D作y軸的垂線交l于點E,此時E與A重合,并得到一個正方形ABCD,若原點O在正方形ABCD的對角線上且分這條對角線為1:2的兩條線段,則a的值為

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】為有效開發(fā)海洋資源,保護海洋權益,我國對南海諸島進行了全面調查,一測量船在A島測得B島在北偏西30°,C島在北偏東15°,航行100海里到達B島,在B島測得C島在北偏東45°,求B,C兩島及A,C兩島的距離( ≈2.45,結果保留到整數)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】為了探究n條直線能把平面最多分成幾部分,我們從最簡單的情形入手:

一條直線把平面分成2部分;

兩條直線可把平面最多分成4部分;

三條直線可把平面最多分成7部分;

四條直線可把平面最多分成11部分;

……

把上述探究的結果進行整理,列表分析:

直線條數

把平面最多

分成的部分數

寫成和的形式

1

2

1+1

2

4

1+1+2

3

7

1+1+2+3

4

11

1+1+2+3+4

(1)當直線條數為5,把平面最多分成____部分,寫成和的形式:______;

(2)當直線條數為10,把平面最多分成____部分;

(3)當直線條數為n,把平面最多分成多少部分?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,矩形OABC的邊OA、OC分別在x軸和y軸上,OC=3,OA=2 ,D是BC的中點,將△OCD沿直線OD折疊后得到△OGD,延長OG交AB于點E,連接DE,則點G的坐標為

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,點A在以BC為直徑的⊙O內,且AB=AC,以點A為圓心,AC長為半徑作弧,得到扇形ABC,剪下扇形ABC圍成一個圓錐(AB和AC重合),若∠BAC=120°,BC=2 ,則這個圓錐底面圓的半徑是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在ABCD中,AC為對角線,AC=BC=5,AB=6,AE是△ABC的中線.

(1)用無刻度的直尺畫出△ABC的高CH(保留畫圖痕跡);
(2)求△ACE的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,兩條射線AMBN,線段CD的兩個端點CD分別在射線BN、AM上,且∠ABCD=108°.E是線段AD上一點(不與點AD重合),且BD平分∠EBC

(1)求∠ABC的度數.

(2)請在圖中找出與∠ABC相等的角,并說明理由.

(3)若平行移動CD,且ADCD,則∠ADB與∠AEB的度數之比是否隨著CD位置的變化而發(fā)生變化?若變化,找出變化規(guī)律;若不變,求出這個比值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】函數y=ax2﹣2x+1和y=ax+a(a是常數,且a≠0)在同一直角坐標系中的圖象可能是(
A.
B.
C.
D.

查看答案和解析>>

同步練習冊答案