【題目】如圖,兩條射線AMBN,線段CD的兩個端點C、D分別在射線BN、AM上,且∠ABCD=108°.E是線段AD上一點(不與點A、D重合),且BD平分∠EBC

(1)求∠ABC的度數(shù).

(2)請在圖中找出與∠ABC相等的角,并說明理由.

(3)若平行移動CD,且ADCD,則∠ADB與∠AEB的度數(shù)之比是否隨著CD位置的變化而發(fā)生變化?若變化,找出變化規(guī)律;若不變,求出這個比值.

【答案】(1)∠ABC=72°;(2)與ABC相等的角是∠ADC、∠DCN;(3)不發(fā)生變化.比值為.

【解析】

(1)由平行線的性質(zhì)可求得∠A+∠ABC=180°,即可求得答案

(2)利用平行線的性質(zhì)可求得∠ADC=∠DCN,∠ADC+∠BCD=180°,則可求得答案;

(3)利用平行線的性質(zhì),可求得∠AEB=∠EBC,∠ADB=∠DBC,再結(jié)合角平分線的定義可求得答案

1)∵AMBN,∴∠A+∠ABC=180°,∴∠ABC=180°﹣∠A=180°﹣108°=72°.

(2)與∠ABC相等的角是∠ADC、∠DCN

AMBN,∴∠ADC=∠DCN,∠ADC+∠BCD=180°,∴∠ADC=180°﹣∠BCD=180°﹣108°=72°,∴∠DCN=72°,∴∠ADC=∠DCN=∠ABC

(3)不發(fā)生變化

AMBN,∴∠AEB=∠EBC,∠ADB=∠DBC

BD平分∠EBC,∴∠DBCEBC,∴∠ADBAEB,∴∴

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算
(1)計算:﹣22+(﹣ 1+2sin60°﹣|1﹣ |
(2)先化簡,再求值:( ﹣x﹣1)÷ ,其中x=﹣2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】凱里市某文具店某種型號的計算器每只進價12元,售價20元,多買優(yōu)惠,優(yōu)勢方法是:凡是一次買10只以上的,每多買一只,所買的全部計算器每只就降價0.1元,例如:某人買18只計算器,于是每只降價0.1×(18﹣10)=0.8(元),因此所買的18只計算器都按每只19.2元的價格購買,但是每只計算器的最低售價為16元.
(1)求一次至少購買多少只計算器,才能以最低價購買?
(2)求寫出該文具店一次銷售x(x>10)只時,所獲利潤y(元)與x(只)之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(3)一天,甲顧客購買了46只,乙顧客購買了50只,店主發(fā)現(xiàn)賣46只賺的錢反而比賣50只賺的錢多,請你說明發(fā)生這一現(xiàn)象的原因;當10<x≤50時,為了獲得最大利潤,店家一次應(yīng)賣多少只?這時的售價是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx﹣5(a≠0)與x軸交于點A(﹣5,0)和點B(3,0),與y軸交于點C.

(1)求該拋物線的解析式;
(2)若點E為x軸下方拋物線上的一動點,當SABE=SABC時,求點E的坐標;
(3)在(2)的條件下,拋物線上是否存在點P,使∠BAP=∠CAE?若存在,求出點P的橫坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們知道,圖形是一種重要的數(shù)學(xué)語言,它直觀形象,能有效地表現(xiàn)一些代數(shù)中的數(shù)量關(guān)系,對幾何圖形做出代數(shù)解釋和用幾何圖形的面積表示代數(shù)恒等式是互逆的.課本上由拼圖用幾何圖形的面積來驗證了乘法公式,一些代數(shù)恒等式也能用這種形式表示,例如(2ab)(ab)=2a2+3abb2就可以用圖①或圖②等圖形的面積表示.

(1)填一填:請寫出圖③所表示的代數(shù)恒等式:______________________________;

(2)畫一畫:試畫出一個幾何圖形,使它的面積能表示:(ab)(a+3b)=a2+4ab+3b2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AD⊥BC,BE⊥AC,垂足分別為D、E,AD與BE相交于點F.
(1)求證:△ACD∽△BFD;
(2)若∠ABD=45°,AC=3時,求BF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=4cm,D為BC的中點,若動點E以1cm/s的速度從A點出發(fā),沿著A→B→A的方向運動,設(shè)E點的運動時間為t秒(0≤t<12),連接DE,當△BDE是直角三角形時,t的值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線與x軸只有一個交點A(﹣2,0),與y軸交于點B(0,4).

(1)求拋物線對應(yīng)的函數(shù)解析式;
(2)過點B作平行于x軸的直線交拋物線與點C.
①若點M在拋物線的AB段(不含A、B兩點)上,求四邊形BMAC面積最大時,點M的坐標;
②在平面直角坐標系內(nèi)是否存在點P,使以P、A、B、C為頂點的四邊形是平行四邊形,若存在直接寫出所有滿足條件的點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線y=x2+4ax+b與x軸相交于O、A兩點(其中O為坐標原點),過點P(2,2a)作直線PM⊥x軸于點M,交拋物線于點B,點B關(guān)于拋物線對稱軸的對稱點為C(其中B、C不重合),連接AP交y軸于點N,連接BC和PC.
(1)a= 時,求拋物線的解析式和BC的長;
(2)如圖a<﹣1時,若AP⊥PC,求a的值.

查看答案和解析>>

同步練習(xí)冊答案