【題目】我們給出如下定義:若一個(gè)四邊形有一組對(duì)角互補(bǔ)(即對(duì)角之和為180°),則稱(chēng)這個(gè)四邊形為圓滿(mǎn)四邊形.
(1)概念理解:在平行四邊形、菱形、矩形、正方形中,你認(rèn)為屬于圓滿(mǎn)四邊形的有
(2)問(wèn)題探究:如圖,在四邊形ABCD中,對(duì)角線(xiàn)AC、BD相交于點(diǎn)O,若∠ADB=∠ACB,問(wèn)四邊形ABCD是圓滿(mǎn)四邊形嗎?請(qǐng)說(shuō)明理由.小明經(jīng)過(guò)思考后,判斷四邊形ABCD是圓滿(mǎn)四邊形,并提出了如下探究思路:先證明△AOD∽△BOC,得到比例式 = ,再證明△AOB∽△DOC,得出對(duì)應(yīng)角相等,根據(jù)四邊形內(nèi)角和定理,得出一組對(duì)角互補(bǔ).請(qǐng)你幫助小明寫(xiě)出解題過(guò)程.

(3)問(wèn)題解決:請(qǐng)結(jié)合上述解題中所積累的經(jīng)驗(yàn)和知識(shí)完成下題.如圖,四邊形ABCD中,AD⊥BD,AC⊥BC,AB與DC的延長(zhǎng)線(xiàn)相交于點(diǎn)E,BE=BD,AB=5,AD=3,求CE的長(zhǎng).

【答案】
(1)矩形,正方形
(2)

解:證明:∵∠ADB=∠ACB,∠AOD=∠BOC,

∴∠DAO=∠CBO,

∴△AOD∽△BOC,

,又∵∠AOB=∠DOC,

∴△AOB∽△DOC,

∴∠OAB=∠ODC,∠OBA=∠OCD.

∴∠ADB+∠ODC+∠OBA+∠OBC=∠ACB+∠OAB+∠OCD+∠OAD=180°,

即∠ADB+∠ABC=∠DCB+∠DAB=180°.

∴四邊形ABCD是圓滿(mǎn)四邊形


(3)

解:如圖,∵AD⊥BD,AC⊥BC,

∴∠ADB=∠ACB=90°,

∴四邊形ABCD是圓滿(mǎn)四邊形,

由上可得,∠DAB+∠DCB=∠ADC+∠ABC=180°,∠BDC=∠BAC.

又∵BE=BD,

∴∠BED=∠BDC=∠BAC,

∴AC=EC.

又∵∠BCE+∠DCB=180°,

∴∠BCE=∠DAB,

又∠BEC=∠DEA,

∴△BEC∽△DEA,

,

設(shè)AC=EC=x,則BC= =

BD= =4,

∴EA=5+4=9,

,解得,x=

即:CE=


【解析】解:(1)∵矩形和正方形的四個(gè)內(nèi)角都是90°,
∴矩形和正方形的兩組對(duì)角的和為180°,
∴矩形,正方形是圓滿(mǎn)四邊形.
故答案是:矩形,正方形;
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解相似三角形的應(yīng)用的相關(guān)知識(shí),掌握測(cè)高:測(cè)量不能到達(dá)頂部的物體的高度,通常用“在同一時(shí)刻物高與影長(zhǎng)成比例”的原理解決;測(cè)距:測(cè)量不能到達(dá)兩點(diǎn)間的舉例,常構(gòu)造相似三角形求解.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】金秋十月,長(zhǎng)沙市某中學(xué)組織七年級(jí)學(xué)生去某綜合實(shí)踐基地進(jìn)行秋季社會(huì)實(shí)踐活動(dòng),每人需購(gòu)買(mǎi)一張門(mén)票,該綜合實(shí)踐基地的門(mén)票價(jià)格為每張240元,如果一次購(gòu)買(mǎi)500張以上(不含500張)門(mén)票,則門(mén)票價(jià)格為每張220元,請(qǐng)回答下列問(wèn)題:

1)列式表示n個(gè)人參加秋季社會(huì)實(shí)踐活動(dòng)所需錢(qián)數(shù);

2)某校用132000元可以購(gòu)買(mǎi)多少?gòu)堥T(mén)票;

3)如果我校490人參加秋季社會(huì)實(shí)踐,怎樣購(gòu)買(mǎi)門(mén)票花錢(qián)最少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列圖形都是由同樣大小的小圓圈按一定規(guī)律所組成的,其中第①個(gè)圖形中一共有6個(gè)小圓圈,第②個(gè)圖形中一共有9個(gè)小圓圈,第③個(gè)圖形中一共有12個(gè)小圓圈,…,按此規(guī)律排列,則第⑩個(gè)圖形中小圓圈的個(gè)數(shù)為( )

A. 24 B. 27 C. 30 D. 33

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,如圖1,AOB和∠COD共頂點(diǎn)OOBOD重合,OM為∠AOD的平分線(xiàn),ON為∠BOC的平分線(xiàn),∠AOBα,CODβ

(1)如圖2,若α=90°,β=30°,則∠MON=________;

(2)若將∠CODO逆時(shí)針旋轉(zhuǎn)至圖3的位置,求∠MON;(α,β表示)

(3)如圖4,若α=2β,CODO逆時(shí)針旋轉(zhuǎn),轉(zhuǎn)速為3°/秒,∠AOBO同時(shí)逆時(shí)針旋轉(zhuǎn),轉(zhuǎn)速為1°/(轉(zhuǎn)到OCOA共線(xiàn)時(shí)停止運(yùn)動(dòng)),且OE平分∠BOD,請(qǐng)判斷∠COE與∠AOD的數(shù)量關(guān)系并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線(xiàn)y=ax2+bx經(jīng)過(guò)A(4,0),B(1,3)兩點(diǎn),點(diǎn)B、C關(guān)于拋物線(xiàn)的對(duì)稱(chēng)軸l對(duì)稱(chēng),過(guò)點(diǎn)B作直線(xiàn)BH⊥x軸,交x軸于點(diǎn)H.

(1)求拋物線(xiàn)的解析式;
(2)若點(diǎn)M在直線(xiàn)BH上運(yùn)動(dòng),點(diǎn)N在x軸上運(yùn)動(dòng),是否存在這樣的點(diǎn)M、N,使得以點(diǎn)M為直角頂點(diǎn)的△CNM是等腰直角三角形?若存在,請(qǐng)求出點(diǎn)M、N的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我市某中學(xué)為了深入學(xué)習(xí)社會(huì)主義核心價(jià)值觀(guān),特對(duì)本校部分學(xué)生(隨機(jī)抽樣)進(jìn)行了一次相關(guān)知識(shí)的測(cè)試(成績(jī)分為A、B、C、D、E、五個(gè)組,x表示測(cè)試成績(jī)),通過(guò)對(duì)測(cè)試成績(jī)的分析,得到如圖所示的兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)圖中提供的信息解答以下問(wèn)題.
A組:90≤x≤100 B組:80≤x<90 C組:70≤x<80 D組:60≤x<70 E組:x<60

(1)參加調(diào)查測(cè)試的學(xué)生共有人;請(qǐng)將兩幅統(tǒng)計(jì)圖補(bǔ)充完整
(2)本次調(diào)查測(cè)試成績(jī)的中位數(shù)落在組內(nèi).
(3)本次調(diào)查測(cè)試成績(jī)?cè)?0分以上(含80分)為優(yōu)秀,該中學(xué)共有3000人,請(qǐng)估計(jì)全校測(cè)試成績(jī)?yōu)閮?yōu)秀的學(xué)生有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算

(1)()×(﹣36)

(2)﹣32+(﹣2×(﹣)+|﹣22|+(﹣1)2013;

(3)36×(﹣99);

(4)﹣13×﹣0.34×+×(﹣13)﹣×0.34(用簡(jiǎn)便方法計(jì)算)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,菱形OABC的頂點(diǎn)O在坐標(biāo)原點(diǎn),頂點(diǎn)A在x軸上,∠B=120°,OA=2,將菱形OABC繞原點(diǎn)順時(shí)針旋轉(zhuǎn)105°至OA′B′C′的位置,則點(diǎn)B′的坐標(biāo)為( )

A.( ,﹣
B.(﹣ ,
C.(2,﹣2)
D.( ,﹣

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】之前我們學(xué)習(xí)了一元一次方程的解法,下面是一道解一元一次方程的題:

解方程=1

老師說(shuō):這是一道含有分母的一元一次方程,我們可以根據(jù)等式的性質(zhì),可以把方程的兩邊同乘以6,這樣就可以去掉分母了.于是,小明按照老師說(shuō)的方法進(jìn)行了解答,小明同學(xué)的解題過(guò)程如下:

解:方程兩邊同時(shí)乘以6,得×6﹣×6=1…………①

去分母,得:2(2﹣3x)﹣3(x﹣5)=1………②

去括號(hào),得:4﹣6x﹣3x+15=1……………③

移項(xiàng),得:﹣6x﹣3x=1﹣4﹣15…………④

合并同類(lèi)項(xiàng),得﹣9x=﹣18……………⑤

系數(shù)化1,得:x=2………………⑥

上述小明的解題過(guò)程從第   步開(kāi)始出現(xiàn)錯(cuò)誤,錯(cuò)誤的原因是   

請(qǐng)幫小明改正錯(cuò)誤,寫(xiě)出完整的解題過(guò)程.

查看答案和解析>>

同步練習(xí)冊(cè)答案