【題目】如圖①,BC是⊙O的直徑,點A在⊙O上,AD⊥BC垂足為D,弧AE=弧AB,BE分別交AD、AC于點F、G.
(1)判斷△FAG的形狀,并說明理由;
(2)如圖②若點E與點A在直徑BC的兩側,BE、AC的延長線交于點G,AD的延長線交BE于點F,其余條件不變(1)中的結論還成立嗎?請說明理由.
(3)在(2)的條件下,若BG=26,DF=5,求⊙O的直徑BC.
【答案】(1)△FAG是等腰三角形,理由見解析;(2)成立,理由見解析;(3)BC=.
【解析】
(1)首先根據圓周角定理及垂直的定義得到∠BAD+∠CAD=90°,∠C+∠CAD=90°,從而得到∠BAD=∠C,然后利用等弧對等角等知識得到AF=BF,從而證得FA=FG,判定等腰三角形;
(2)成立,同(1)的證明方法即可得答案;
(3)由(2)知∠DAC=∠AGB,推出∠BAD=∠ABG,得到F為BG的中點根據直角三角形的性質得到AF=BF=BG=13,求得AD=AF﹣DF=13﹣5=8,根據勾股定理得到BD=12,AB=4,由∠ABC=∠ABD,∠BAC=∠ADB=90°可證明△ABC∽△DBA,根據相似三角形的性質即可得到結論.
(1)△FAG等腰三角形;理由如下:
∵BC為直徑,
∴∠BAC=90°,
∴∠ABE+∠AGB=90°,
∵AD⊥BC,
∴∠ADC=90°,
∴∠ACD+∠DAC=90°,
∵,
∴∠ABE=∠ACD,
∴∠DAC=∠AGB,
∴FA=FG,
∴△FAG是等腰三角形.
(2)成立,理由如下:
∵BC為直徑,
∴∠BAC=90°,
∴∠ABE+∠AGB=90°,
∵AD⊥BC,
∴∠ADC=90°,
∴∠ACD+∠DAC=90°,
∵,
∴∠ABE=∠ACD,
∴∠DAC=∠AGB,
∴FA=FG,
∴△FAG是等腰三角形.
(3)由(2)知∠DAC=∠AGB,且∠BAD+∠DAC=90°,∠ABG+∠AGB=90°,
∴∠BAD=∠ABG,
∴AF=BF,
∵AF=FG,
∴BF=GF,即F為BG的中點,
∵△BAG為直角三角形,
∴AF=BF=BG=13,
∵DF=5,
∴AD=AF﹣DF=13﹣5=8,
∴在Rt△BDF中,BD==12,
∴在Rt△BDA中,AB==4,
∵∠ABC=∠ABD,∠BAC=∠ADB=90°,
∴△ABC∽△DBA,
∴=,
∴=,
∴BC=,
∴⊙O的直徑BC=.
科目:初中數學 來源: 題型:
【題目】如圖,正方形中,,為的中點,將沿翻折得到,延長交于,,垂足為,連接、.結論:①;②≌;③∽;④;⑤.其中的正確的個數是( )
A.2B.3C.4D.5
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知一次函數y=kx+b的圖象與x軸交于點A,與反比例函數 (x<0)的圖象交于點B(﹣2,n),過點B作BC⊥x軸于點C,點D(3﹣3n,1)是該反比例函數圖象上一點.
(1)求m的值;
(2)若∠DBC=∠ABC,求一次函數y=kx+b的表達式.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某玩具廠接的600件玩具的訂單后,決定由甲、乙兩車間共同完成生產任務,已知甲車間工作效率是乙車間的2倍,乙車間單獨完成此項生產任務比甲車間單獨完成多用10天.
(1)求甲,乙兩車間平均每天各能制作多少件玩具;
(2)兩車間同時開工3天后,臨時又增加了90件的玩具生產任務,為了使完成任務的總時間不超過7天,兩車間從第4天起各自提高工作效率,提高工作效率后甲車間工作效率仍是乙車間工作率的2倍,求乙車間提高效率后每天至少生產多少件玩具.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】4張相同的卡片分別寫有數字﹣1、﹣3、4、6,將這些卡片的背面朝上,并洗勻.
(1)從中任意抽取1張,抽到的數字大于0的概率是______;
(2)從中任意抽取1張,并將卡片上的數字記作二次函數y=ax2+bx中的a,再從余下的卡片中任意抽取1張,并將卡片上的數字記作二次函數y=ax2+bx中的b,利用樹狀圖或表格的方法,求出這個二次函數圖象的對稱軸在y軸右側的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知二次函數y=﹣x2+bx+c的圖象經過A(2,0),B(0,﹣6)兩點.
(1)求這個二次函數的解析式;
(2)設該二次函數圖象的對稱軸與x軸交于點C,連接BA、BC,求△ABC的面積和周長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】內接于⊙,是直徑,,點在⊙上.
(1)如圖,若弦交直徑于點,連接,線段是點到的垂線.
①問的度數和點的位置有關嗎?請說明理由.
②若的面積是的面積的倍,求的正弦值.
(2)若⊙的半徑長為,求的長度.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】二次函數的部分圖象如圖所示,圖象過點,對稱軸為直.下列結論:;;;若點點點在該函數圖象上,則; 若方程的兩根為和,且,則.其中正確的結論有( )
A.個B.個C.個D.個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖是二次函數y=ax2+bx+c(a,b,c是常數,a≠0)圖象的一部分,與x軸的交點A在點(2,0)和(3,0)之間,對稱軸是x=1.對于下列說法:①ab<0;②2a+b=0;③3a+c>0;④a+b≥m(am+b)(m為實數);⑤當﹣1<x<3時,y>0,其中正確的是( )
A. ①②④ B. ①②⑤ C. ②③④ D. ③④⑤
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com