【題目】如圖,拋物線y=﹣x2+2x+3與y軸交于點C,點D(0,1),點P是拋物線上的動點.若△PCD是以CD為底的等腰三角形,則點P的坐標(biāo)為

【答案】(1+ ,2)或(1﹣ ,2)
【解析】解:
∵△PCD是以CD為底的等腰三角形,
∴點P在線段CD的垂直平分線上,
如圖,過P作PE⊥y軸于點E,則E為線段CD的中點,
∵拋物線y=﹣x2+2x+3與y軸交于點C,
∴C(0,3),且D(0,1),
∴E點坐標(biāo)為(0,2),
∴P點縱坐標(biāo)為2,
在y=﹣x2+2x+3中,令y=2,可得﹣x2+2x+3=2,解得x=1±
∴P點坐標(biāo)為(1+ ,2)或(1﹣ ,2),
所以答案是:(1+ ,2)或(1﹣ ,2).
【考點精析】解答此題的關(guān)鍵在于理解等腰三角形的判定的相關(guān)知識,掌握如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(簡稱:等角對等邊).這個判定定理常用于證明同一個三角形中的邊相等.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,陽光下,小亮的身高如圖中線段AB所示,他在地面上的影子如圖中線段BC所示,線段DE表示旗桿的高,線段FG表示一堵高墻.

(1)請你在圖中畫出旗桿在同一時刻陽光照射下形成的影子;
(2)如果小亮的身高AB=1.6m,他的影子BC=2.4m,旗桿的高DE=15m,旗桿與高墻的距離EG=16m,請求出旗桿的影子落在墻上的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】潛山市某村辦工廠,今年前5個月生產(chǎn)某種產(chǎn)品的總量C(件)關(guān)于時間t(月)的函數(shù)圖象如圖所示,則該廠對這種產(chǎn)品來說( 

A. 1月至3月每月生產(chǎn)總量逐月增加,4、5兩月每月生產(chǎn)總量逐月減少

B. 1月至3月每月生產(chǎn)總量逐月增加,4,5兩月每月生產(chǎn)量與3月持平

C. 1月至3月每月生產(chǎn)總量逐月增加,4、5兩月均停止生產(chǎn)

D. 1月至3月每月生產(chǎn)總量不變,4、5兩月均停止生產(chǎn)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,ADBC,ECD的中點,連接AE、BE,BEAE,延長AEBC的延長線于點F.

求證:(1)FC=AD;

(2)AB=BC+AD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知xy<0,x<y,|x|=1,|y|=2.

(1)xy的值;

(2)+(xy-1)2的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=x+6與x軸、y軸分別相交于點E、F,點A的坐標(biāo)為(﹣6,0),P(x,y)是直線y=x+6上一個動點.

(1)在點P運動過程中,試寫出OPA的面積s與x的函數(shù)關(guān)系式;

(2)當(dāng)P運動到什么位置,OPA的面積為,求出此時點P的坐標(biāo);

(3)過P作EF的垂線分別交x軸、y軸于C、D.是否存在這樣的點P,使△COD≌△FOE?若存在,直接寫出此時點P的坐標(biāo)(不要求寫解答過程);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我市某校開展了以“夢想中國”為主題的攝影大賽,要求參賽學(xué)生每人交一件作品.現(xiàn)將從中挑選的50件參賽作品的成績(單位:分)統(tǒng)計如下:

等級

成績(用m表示)

頻數(shù)

頻率

A

90≤m≤100

x

0.08

B

80≤m<90

34

y

C

m<80

12

0.24

合計

50

1

請根據(jù)上表提供的信息,解答下列問題:
(1)表中x的值為 , y的值為;(直接填寫結(jié)果)
(2)將本次參賽作品獲得A等級的學(xué)生依次用A1、A2、A3…表示.現(xiàn)該校決定從本次參賽作品獲得A等級的學(xué)生中,隨機抽取兩名學(xué)生談?wù)勊麄兊膮①愺w會,則恰好抽到學(xué)生A1和A2的概率為 . (直接填寫結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】請將下列證明過程補充完整:

已知:如圖,點PCD上,已知∠BAP+∠APD=180°∠1=∠2

求證:∠E=∠F

證明:∵∠BAP+∠APD=180°已知

∴∠BAP=

∵∠1=∠2(已知)

∴∠BAP﹣ = ﹣∠2

即∠3= (等式的性質(zhì))

∴AE∥PF

∴∠E=∠F

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖一次函數(shù)y= x+1的圖象與x軸交于點A,與y軸交于點B;二次函數(shù)y= x2+bx+c的圖象與一次函數(shù)y= x+1的圖象交于B、C兩點,與x軸交于D、E兩點且D點坐標(biāo)為(1,0).

(1)求二次函數(shù)的解析式;
(2)求四邊形BDEC的面積S;
(3)在x軸上是否存在點P,使得△PBC是以P為直角頂點的直角三角形?若存在,求出所有的點P,若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案