【題目】(8分)如圖:在四邊形ABCD中,E是AB上的一點(diǎn),△ADE和△BCE都是等邊三角形,點(diǎn)P、Q、M、N分別為AB、BC、CD、DA的中點(diǎn),四邊形MNPQ什么形狀?說(shuō)明理由。

【答案】四邊形MNPQ為菱形

【解析】連接四邊形ADCB的對(duì)角線,通過(guò)全等三角形來(lái)證得AC=BD,從而根據(jù)三角形中位線定理證得四邊形NPQM的四邊相等,可得出四邊形MNPQ是菱形.

解:連接BDAC;

∵△ADE、△ECB是等邊三角形,

∴AE=DE,EC=BE∠AED=∠BEC=60°;

∴∠AEC=∠DEB=120°;

∴△AEC≌△DEBSAS);

∴AC=BD;

∵M(jìn)NCD、AD的中點(diǎn),

∴MN=NP=PQ=MQ,

四邊形NPQM是菱形;

故選C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC中,∠ACB=90°,點(diǎn)FAC延長(zhǎng)線上,,DE△ABC中位線,如果∠1=30°,DE=2,則四邊形AFED的周長(zhǎng)是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在10×10的正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)為1個(gè)單位長(zhǎng)度.△ABC的頂點(diǎn)都在正方形網(wǎng)格的格點(diǎn)上,且通過(guò)兩次平移(沿網(wǎng)格線方向作上下或左右平移)后得到△A′B′C′,點(diǎn)C的對(duì)應(yīng)點(diǎn)是直線上的格點(diǎn)C′.

(1)畫出△A′B′C′.

(2)△ABC兩次共平移了___個(gè)單位長(zhǎng)度。

(3)試在直線上畫出點(diǎn)P,使得由點(diǎn)A′、B′、C′、P四點(diǎn)圍成的四邊形的面積為9.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABCAB、AC為邊分別作正方形ADEB、ACGF,連接DC、BF:

(1)CDBF相等嗎?請(qǐng)說(shuō)明理由;

(2)CDBF互相垂直嗎?請(qǐng)說(shuō)明理由;

(3)利用旋轉(zhuǎn)的觀點(diǎn),在此題中,ADC可看成由哪個(gè)三角形繞哪點(diǎn)旋轉(zhuǎn)多少角度得到的?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形中,邊的中點(diǎn),連接并延長(zhǎng)交的延長(zhǎng)線于點(diǎn),且添加一個(gè)條件使四邊形是平行四邊形,下面四個(gè)條件中可選擇的是(   。

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】用兩個(gè)全等的等邊△ABC和△ADC,在平面上拼成菱形ABCD,把一個(gè)含60°角的三角尺與這個(gè)菱形重合,使三角尺有兩邊分別在AB、AC上,將三角尺繞點(diǎn)A按逆時(shí)針?lè)较蛐D(zhuǎn).

(1)如圖1,當(dāng)三角尺的兩邊與BC、CD分別相交于點(diǎn)E、F時(shí),觀察或測(cè)量BE,CF的長(zhǎng)度,你能得出什么結(jié)論?證明你的結(jié)論。

(2)如圖2,當(dāng)三角尺的兩邊與BC、CD的延長(zhǎng)線分別交于E、F時(shí),你在(1)中的結(jié)論還成立嗎?請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在△OAB中,∠OAB=90°∠AOB=30°,OB=8.以OB為邊,在△OAB

外作等邊△OBCDOB的中點(diǎn),連接AD并延長(zhǎng)交OCE

1)求證:四邊形ABCE是平行四邊形;

2)如圖2,將圖1中的四邊形ABCO折疊,使點(diǎn)C與點(diǎn)A重合,折痕為FG,求OG的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,⊙C過(guò)原點(diǎn)O,且與兩坐標(biāo)軸分別交于點(diǎn)A、B,點(diǎn)A的坐標(biāo)為(0,2),M是第三象限內(nèi)⊙C上一點(diǎn),∠BMO=120°,則圓心C的坐標(biāo)為( 。

A. 1,1 B. 1, C. 2,1 D. ,1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A(3,3),B(5,3).

(1)在y軸的負(fù)方向上有一點(diǎn)C(如圖),使得四邊形AOCB的面積為18,求C點(diǎn)的坐標(biāo);

(2)將ABO先向上平移2個(gè)單位,再向左平移4個(gè)單位,得A1B1O1

①直接寫出B1的坐標(biāo):B1   

②求平移過(guò)程中線段OB掃過(guò)的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案