【題目】如圖,在菱形ABCD中,AB=BD,點EF分別是AB、AD上任意的點(不與端點重合),且AE=DF,連接BFDE相交于點G,連接CGBD相交于點H.給出如下幾個結(jié)論:①△AED≌△DFB;S四邊形BCDG=;AF=2DF,則BG=6GF;CGBD一定不垂直;⑤∠BGE的大小為定值.

其中正確的結(jié)論個數(shù)為( )

A. 4 B. 3 C. 2 D. 1

【答案】B

【解析】試題分析:①∵ABCD為菱形,∴AB=AD,∵AB=BD,∴△ABD為等邊三角形,∴∠A=∠BDF=60°,又∵AE=DFAD=BD,∴△AED≌△DFB,故本選項正確;

②∵∠BGE=BDG+DBF=BDG+GDF=60°=BCD,即BGD+BCD=180°,B、C、D、G四點共圓,∴∠BGC=BDC=60°,DGC=DBC=60°,∴∠BGC=DGC=60°,過點CCMGBMCNGDN(如圖1),則CBM≌△CDNAAS),S四邊形BCDG=S四邊形CMGN,S四邊形CMGN=2SCMG,∵∠CGM=60°,GM=CG,CM=CGS四邊形CMGN=2SCMG=2××CG×CG=,故本選項錯誤;

過點FFPAEP點(如圖2),AF=2FD,FPAE=DFDA=13,AE=DF,AB=ADBE=2AE,FPBE=FPAE=16,FPAEPFBE,FGBG=FPBE=16,即BG=6GF,故本選項正確;

當點E,F分別是AB,AD中點時(如圖3),由(1)知,△ABD,△BDC為等邊三角形,E,F分別是ABAD中點,∴∠BDE=∠DBG=30°∴DG=BG,在△GDC△BGC中,∵DG=BG,CG=CGCD=CB,∴△GDC≌△BGC,∴∠DCG=∠BCG,∴CH⊥BD,即CG⊥BD,故本選項錯誤;

⑤∵∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60°,為定值,故本選項正確;

綜上所述,正確的結(jié)論有①③⑤,共3個,故選B

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】學校準備從甲乙兩位選手中選擇一位選手代表學校參加所在地區(qū)的漢字聽寫大賽,學校對兩位選手從表達能力、閱讀理解、綜合素質(zhì)和漢字聽寫四個方面做了測試,他們各自的成績(百分制)如下表:

選手

表達能力

閱讀理解

綜合素質(zhì)

漢字聽寫

85

78

85

73

73

80

82

83

1)由表中成績已算得甲的平均成績?yōu)?/span>80.25,請計算乙的平均成績,從他們的這一成績看,應(yīng)選派誰;

2)如果表達能力、閱讀理解、綜合素質(zhì)和漢字聽寫分別賦予它們20%、10%、30%和40%的權(quán)重,請分別計算兩名選手的最終成績,從他們的這一成績看,應(yīng)選派誰.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平行四邊形ABCD中,AE平分∠BAD,交BC于點E,且ABAE,延長ABDE的延長線交于點F.下列結(jié)論中:①△ABC≌△AED;②△ABE是等邊三角形;③ADAF;④SABESCDE;⑤SABESCEF.其中正確的是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知正比例函數(shù)y=2x與反比例函數(shù)y=(k>0)的圖象交于A、B兩點,且點A的橫坐標為4,

(1)求k的值;

(2)根據(jù)圖象直接寫出正比例函數(shù)值小于反比例函數(shù)值時x的取值范圍;

(3)過原點O的另一條直線l交雙曲線y=(k>0)于P、Q兩點(P點在第一象限),若由點A、P、B、Q為頂點組成的四邊形面積為224,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩車分別從相距480kmA、B兩地相向而行,乙車比甲車先出發(fā)1小時,并以各自的速度勻速行駛,途徑C地,甲車到達C地停留1小時,因有事按原路原速返回A地.乙車從B地直達A地,兩車同時到達A地.甲、乙兩車距各自出發(fā)地的路程y(千米)與甲車出發(fā)所用的時間x(小時)的關(guān)系如圖,結(jié)合圖象信息解答下列問題:

1)乙車的速度是   千米/時,t  小時;

2)求甲車距它出發(fā)地的路程y與它出發(fā)的時間x的函數(shù)關(guān)系式,并寫出自變量的取值范圍;

3)直接寫出乙車出發(fā)多長時間兩車相距120千米.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了提高服務(wù)質(zhì)量,某賓館決定對甲、乙兩種套房進行星級提升,已知甲種套房提升費用比乙種套房提升費用少3萬元,如果提升相同數(shù)量的套房,甲種套房費用為625萬元,乙種套房費用為700萬元.

1)甲、乙兩種套房每套提升費用各多少萬元?

2)如果需要甲、乙兩種套房共80套,市政府籌資金不少于2090萬元,但不超過2096萬元,且所籌資金全部用于甲、乙種套房星級提升,市政府對兩種套房的提升有幾種方案?哪一種方案的提升費用最少?

3)在(2)的條件下,根據(jù)市場調(diào)查,每套乙種套房的提升費用不會改變,每套甲種套房提升費用將會提高a萬元(a0),市政府如何確定方案才能使費用最少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】列方程解應(yīng)用題

快放寒假了,小宇來到書店準備購買一些課外讀物在假期里閱讀.在選完書結(jié)賬時,收銀員告訴小宇,如果花20元辦理一張會員卡用會員卡結(jié)賬買書,可以享受8折優(yōu)惠.小宇心算了一下,覺得這樣可以節(jié)省13很合算,于是采納了收銀員的意見.請根據(jù)以上信息解答下列問題

1)你認為小宇購買 元以上的書,辦卡就合算了

2)小宇購買這些書的原價是多少元

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD中,AB=6,BC=4,過對角線BD中點O的直線分別交AB,CD邊于點E,F(xiàn).

(1)求證:四邊形BEDF是平行四邊形;

(2)當四邊形BEDF是菱形時,求EF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小蟲從某點出發(fā)在一直線上來回爬行,假定向右爬行的路程記為正,向左爬行的路程記為負,爬過的路程依次為(單位:cm):+5,-3,+10-8,-6,+12-10.問:

1)小蟲離開出發(fā)點最遠是多少厘米?

2)小蟲最后是否回到原點

3)在爬行過程中看,如果每爬行1cm獎勵2粒芝麻,則小蟲共可得到多少粒芝麻?

查看答案和解析>>

同步練習冊答案