【題目】已知點(diǎn)P為∠MAN邊AM上一動(dòng)點(diǎn),⊙P切AN于點(diǎn)C,與AM交于點(diǎn)D(點(diǎn)D在點(diǎn)P的右側(cè)),作DF⊥AN于F,交⊙O于點(diǎn)E.
(1)連接PE,求證:PC平分∠APE;
(2)若DE=2EF,求∠A的度數(shù);
(3)點(diǎn)B為射線AN上一點(diǎn),且AB=8,射線BD交⊙P于點(diǎn)Q,sin∠A=.在P點(diǎn)運(yùn)動(dòng)過程中,是否存在某個(gè)位置,使得△DQE為等腰三角形?若存在,求出此時(shí)AP的長;若不存在,請(qǐng)說明理由.
【答案】(1)證明見解析;(2)∠PAC=30°;(3)存在,AP的長為6或或.
【解析】
(1)根據(jù)已知條件以及切線的性質(zhì)可得PC//DF,再利用平行線的性質(zhì)和等腰三角形的性質(zhì)可以證得∠APC=∠EPC,即可得證結(jié)論;
(2)添加輔助線PH⊥DE于H,根據(jù)已知條件可得DH=HE=EF=HF=PC=PD,進(jìn)一步可判定∠DPH=30°,最后利用平行線的性質(zhì)即可推導(dǎo)出∠A的度數(shù);
(3)分①DQ=QE②DE=QE③DQ=DE三種情況進(jìn)行討論即可.
解:(1)證明:∵AN切⊙O于點(diǎn)C
∴PC⊥AN
∵DF⊥AN
∴PC//DF
∴∠APC=∠PDE, ∠EPC=∠PED
∵PD=PE
∴∠PED=∠PDE
∴∠APC=∠EPC,即PC平分∠APE
(2)作PH⊥DE于H,如圖:
∵PD=PE,DE=2EF
∴DH=HE=EF=HF=PC=PD
∴∠DPH=30°
∵PH//AF
∴∠PAC=∠DPH=30°
(3)①當(dāng)DQ=QE時(shí),如圖1
連接PQ,可證得PQ//AB
∴∠PDQ=∠DQP=∠DBA
∴AD=AB=8
∵設(shè)PC=r,AP=3r
∴AD=4r
∴4r=8
∴r=2
∴AP=3r=6
②當(dāng)DE=QE時(shí), 記⊙P與AD的另一交點(diǎn)為K,連接KE,如圖:
則∠QDE=∠EQD=∠DKE=∠DAF
在Rt△ADF中,DF=AD=r
AF=DF=r
在Rt△DBF中,BF=DF=r
AB=AF-BF=r=8
r=,AP=3r=
③當(dāng)DQ=DE時(shí),連接QK連接QE交AD于I,作QG⊥KE于點(diǎn)G,如圖:
則∠GQE=∠IKE=∠A
在Rt△QGE中,設(shè)GE=2x,則QE=3GE=6x,IE=3x
QG=GE=x
則KG=KE-EG=7x
tan∠QKG==,
∵∠BDF=∠QKE
∴ tan∠BDF= tan∠QKE,BF=DF=
AB=AF+BF==8,
r=,AP=3r=
故答案是:(1)證明見解析;(2)∠PAC=30°;(3)存在,AP的長為6或或
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,A,B兩個(gè)頂點(diǎn)在x軸上方,點(diǎn)C的坐標(biāo)是(﹣1,0),以點(diǎn)C為位似中心,在x軸的下方作△ABC的位似圖形,并把△ABC的邊長放大到原來的2倍,得到△A'B'C',設(shè)點(diǎn)B的對(duì)應(yīng)點(diǎn)B'的橫坐標(biāo)為2,則點(diǎn)B的橫坐標(biāo)為( )
A.﹣1B.C.﹣2D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著經(jīng)濟(jì)的快速發(fā)展,環(huán)境問題越來越受到人們的關(guān)注.某校學(xué)生會(huì)為了了解垃圾分類知識(shí)的普及情況,隨機(jī)調(diào)查了部分學(xué)生,調(diào)查結(jié)果分為“非常了解”“了解”“了解較少”“不了解”四類,并將調(diào)查結(jié)果繪制成下面兩幅統(tǒng)計(jì)圖.
(1)求:本次被調(diào)查的學(xué)生有多少名?補(bǔ)全條形統(tǒng)計(jì)圖.
(2)估計(jì)該校1200名學(xué)生中“非常了解”與“了解”的人數(shù)和是多少.
(3)被調(diào)查的“非常了解”的學(xué)生中有2名男生,其余為女生,從中隨機(jī)抽取2人在全校做垃圾分類知識(shí)交流,請(qǐng)利用畫樹狀圖或列表的方法,求恰好抽到一男一女的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系 XOY中,對(duì)于任意兩點(diǎn) (,)與 (,)的“非常距離”,給出如下定義: 若 ,則點(diǎn) 與點(diǎn) 的“非常距離”為 ;若 ,則點(diǎn) 與點(diǎn)的“非常距離”為 .
例如:點(diǎn) (1,2),點(diǎn) (3,5),因?yàn)?/span> ,所以點(diǎn) 與點(diǎn) 的“非常距離”為 ,也就是圖1中線段 Q與線段 Q長度的較大值(點(diǎn) Q為垂直于 y軸的直線 Q與垂直于 x軸的直線 Q的交點(diǎn))。
(1)已知點(diǎn) A(-,0), B為 y軸上的一個(gè)動(dòng)點(diǎn),①若點(diǎn) A與點(diǎn) B的“非常距離”為2,寫出一個(gè)滿足條件的點(diǎn) B的坐標(biāo);②直接寫出點(diǎn) A與點(diǎn) B的“非常距離”的最小值;
(2)已知 C是直線 上的一個(gè)動(dòng)點(diǎn),①如圖2,點(diǎn) D的坐標(biāo)是(0,1),求點(diǎn) C與點(diǎn) D的“非常距離”的最小值及相應(yīng)的點(diǎn) C的坐標(biāo); ②如圖3, E是以原點(diǎn) O為圓心,1為半徑的圓上的一個(gè)動(dòng)點(diǎn),求點(diǎn) C與點(diǎn) E的“非常距離”的最小值及相應(yīng)的點(diǎn) E和點(diǎn) C的坐標(biāo)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC為直角三角形,∠B=90°,AC邊上取一點(diǎn)D,使CD=AB.分別過點(diǎn)C作CE⊥BC,過點(diǎn)D作DE⊥AC,CE,DE相交于E,連結(jié)AE.
(1)求證:△ABC≌△CDE;
(2)若∠AED=20°,求∠ACE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某工廠用天時(shí)間生產(chǎn)一款新型節(jié)能產(chǎn)品,每天生產(chǎn)的該產(chǎn)品被某網(wǎng)店以每件元的價(jià)格全部訂購,在生產(chǎn)過程中,由于技術(shù)的不斷更新,該產(chǎn)品第天的生產(chǎn)成本(元/件)與(天)之間的關(guān)系如圖所示,第天該產(chǎn)品的生產(chǎn)量(件)與(天)滿足關(guān)系式
第天,該廠生產(chǎn)該產(chǎn)品的利潤是 元;
設(shè)第天該廠生產(chǎn)該產(chǎn)品的利潤為元.
①求與之間的函數(shù)關(guān)系式,并指出第幾天的利潤最大,最大利潤是多少?
②在生產(chǎn)該產(chǎn)品的過程中,當(dāng)天利潤不低于元的共有多少天?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與軸交于、兩點(diǎn),與軸交于點(diǎn),,,連接和.
(1)求拋物線的解析式;
(2)點(diǎn)在拋物線的對(duì)稱軸上,當(dāng)的周長最小時(shí),求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形 ABCD 中,點(diǎn) E,F 分別在 BC,CD 邊上,且 CE=3,CF=4.若△AEF 是等邊三角形,則 AB 的長為___.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,點(diǎn)E,F(xiàn),G分別是等邊三角形ABC三邊AB,BC,CA上的動(dòng)點(diǎn),且始終保持AE=BF=CG,設(shè)△EFG的面積為y,AE的長為x,y關(guān)于x的函數(shù)圖象大致為圖2所示,則等邊三角形ABC的邊長為___.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com