【題目】在平面直角坐標系 XOY中,對于任意兩點 (,)與 (,)的“非常距離”,給出如下定義: 若 ,則點 與點 的“非常距離”為 ;若 ,則點 與點的“非常距離”為 .
例如:點 (1,2),點 (3,5),因為 ,所以點 與點 的“非常距離”為 ,也就是圖1中線段 Q與線段 Q長度的較大值(點 Q為垂直于 y軸的直線 Q與垂直于 x軸的直線 Q的交點)。
(1)已知點 A(-,0), B為 y軸上的一個動點,①若點 A與點 B的“非常距離”為2,寫出一個滿足條件的點 B的坐標;②直接寫出點 A與點 B的“非常距離”的最小值;
(2)已知 C是直線 上的一個動點,①如圖2,點 D的坐標是(0,1),求點 C與點 D的“非常距離”的最小值及相應的點 C的坐標; ②如圖3, E是以原點 O為圓心,1為半徑的圓上的一個動點,求點 C與點 E的“非常距離”的最小值及相應的點 E和點 C的坐標。
【答案】(1)①B(0,2)或(0,﹣2);②; (2)① , C(﹣, );②點C的坐標為(﹣,),E(﹣,),最小值為1.
【解析】
根據(jù)題目對“非常距離”的定義,即兩點間的“非常距離”是指兩點橫坐標和縱坐標差的絕對值中的較大者,根據(jù)這個定義即可解答此題.
(1)解:①∵B為y軸上的一個動點,
∴設點B的坐標為(0,y).
∵|﹣ ﹣0|= ≠2,
∴|0﹣y|=2,
解得,y=2或y=﹣2;
∴點B的坐標是(0,2)或(0,﹣2);
②點A與點B的“非常距離”的最小值為
(2)解:①如圖2,
取點C與點D的“非常距離”的最小值時,需要根據(jù)運算定義“若|x1﹣x2|≥|y1﹣y2|,則點P1與點P2的“非常距離”為|x1﹣x2|”解答,此時|x1﹣x2|=|y1﹣y2|.即AC=AD,
∵C是直線y= x+3上的一個動點,點D的坐標是(0,1),
∴設點C的坐標為(x0 , x0+3),
∴﹣x0= x0+2,
此時,x0=﹣ ,
∴點C與點D的“非常距離”的最小值為:|x0|= ,
此時C(﹣ , );
②如圖3,
當點E在過原點且與直線y= x+3垂直的直線上時,點C與點E的“非常距離”最小,
設E(x,y)(點E位于第二象限).則
,
解得, ,
故E(﹣ , ).
﹣ ﹣x0= x0+3﹣ ,
解得,x0=﹣ ,
則點C的坐標為(﹣ , ),
最小值為1.
科目:初中數(shù)學 來源: 題型:
【題目】若點(﹣2,y1)、(﹣1,y2)和(1,y3)分別在反比例函數(shù)y=﹣的圖象上,則下列判斷中正確的是( )
A. y1<y2<y3 B. y3<y1<y2 C. y2<y3<y1 D. y3<y2<y1
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】有甲乙兩名采購員去同一家飼料公司分別購買兩次飼料,兩次購買飼料價格分別為m元/千克和n元/千克,且m≠n,兩名采購員的采購方式也不同,其中甲每次購買1000千克,乙每次用去800元,而不管購買多少飼料.
(1)甲、乙所購飼料的平均單價各是多少?(用字母m、n表示)
(2)誰的購貨方式更合算?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,∠C=90°,BC=CD=8,過點B作EB⊥AB,交CD于點E.若DE=6,則AD的長為___________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABDC中,∠D=∠B=90°,點O為BD的中點,且AO平分∠BAC.
(1)求證:CO平分∠ACD;
(2)求證:OA⊥OC;
(3)求證:AB+CD=AC.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】過矩形ABCD的對角線AC的中點O作EF⊥AC,交BC邊于點E,交AD邊于點F,分別連接AE,CF.
(1)求證:四邊形AECF是菱形;
(2)若AB=6,AC=10,EC=,求EF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列命題:①有兩個角和第三個角的平分線對應相等的兩個三角形全等;②有兩條邊和第三條邊上的中線對應相等的兩個三角形全等;③有兩條邊和第三條邊上的高對應相等的兩個三角形全等.其中正確的是( 。
A. ①② B. ②③ C. ①③ D. ①②③
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖7,已知平行四邊形ABCD的周長是32cm,AB︰BC=5︰3,AE⊥BC,垂足為E,AF⊥CD,垂足為F,∠EAF=2∠C.
(1)求∠C的度數(shù);
(2)已知DF的長是關(guān)于的方程--6=0的一個根,求該方程的另一個根.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在同一直角坐標系中,二次函數(shù)y=x2-2x-3的圖象與兩坐標軸分別交于點A點 B和點C,一次函數(shù)的圖象與拋物線交于B、C兩點.
(1)將這個二次函數(shù)化為的形式為 。
(2)當自變量滿足 時,兩函數(shù)的函數(shù)值都隨增大而增大。
(3)當自變量滿足 時,一次函數(shù)值大于二次函數(shù)值。
(4)當自變量滿足 時,兩個函數(shù)的函數(shù)值的積小于0。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com