【題目】如圖,在同一直角坐標(biāo)系中,二次函數(shù)y=x2-2x-3的圖象與兩坐標(biāo)軸分別交于點(diǎn)A點(diǎn) B和點(diǎn)C,一次函數(shù)的圖象與拋物線交于B、C兩點(diǎn).
(1)將這個(gè)二次函數(shù)化為的形式為 。
(2)當(dāng)自變量滿足 時(shí),兩函數(shù)的函數(shù)值都隨增大而增大。
(3)當(dāng)自變量滿足 時(shí),一次函數(shù)值大于二次函數(shù)值。
(4)當(dāng)自變量滿足 時(shí),兩個(gè)函數(shù)的函數(shù)值的積小于0。
【答案】(1) ; (2) x>1; (3) 0<x<3;(4) x<-1.
【解析】
(1)y=x2 -2x-3=(x- 1)2-4,
(2)拋物線的對(duì)稱軸為直線x=1,則x>1時(shí)二次函數(shù)的函數(shù)值都隨x增大而增大,而一次函數(shù)y隨x增大而增大,所以當(dāng)x> 1時(shí),兩函數(shù)的函數(shù)值都隨x增大而增大,
(3)當(dāng)0<x<3時(shí),一次函數(shù)值大于二次函數(shù)值;
(4)當(dāng)x<-1時(shí),兩個(gè)函數(shù)的函數(shù)值的積小于0,故答案為y=(x-1)2-4 ; x>1 ; 0<x<3 ;x<-1.
(1)利用配方法把一般式配成頂點(diǎn)式即可;
(2)利用一次函數(shù)和二次函數(shù)的性質(zhì)求解;
(3)利用函數(shù)圖象,寫出一次函數(shù)圖象在二次函數(shù)圖象_上方所對(duì)應(yīng)的自變量的范圍即可;
(4) 由于x<-1時(shí),二次函數(shù)值為正,一次函數(shù)值也負(fù),所以兩個(gè)函數(shù)的函數(shù)值的積小于0.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系 XOY中,對(duì)于任意兩點(diǎn) (,)與 (,)的“非常距離”,給出如下定義: 若 ,則點(diǎn) 與點(diǎn) 的“非常距離”為 ;若 ,則點(diǎn) 與點(diǎn)的“非常距離”為 .
例如:點(diǎn) (1,2),點(diǎn) (3,5),因?yàn)?/span> ,所以點(diǎn) 與點(diǎn) 的“非常距離”為 ,也就是圖1中線段 Q與線段 Q長度的較大值(點(diǎn) Q為垂直于 y軸的直線 Q與垂直于 x軸的直線 Q的交點(diǎn))。
(1)已知點(diǎn) A(-,0), B為 y軸上的一個(gè)動(dòng)點(diǎn),①若點(diǎn) A與點(diǎn) B的“非常距離”為2,寫出一個(gè)滿足條件的點(diǎn) B的坐標(biāo);②直接寫出點(diǎn) A與點(diǎn) B的“非常距離”的最小值;
(2)已知 C是直線 上的一個(gè)動(dòng)點(diǎn),①如圖2,點(diǎn) D的坐標(biāo)是(0,1),求點(diǎn) C與點(diǎn) D的“非常距離”的最小值及相應(yīng)的點(diǎn) C的坐標(biāo); ②如圖3, E是以原點(diǎn) O為圓心,1為半徑的圓上的一個(gè)動(dòng)點(diǎn),求點(diǎn) C與點(diǎn) E的“非常距離”的最小值及相應(yīng)的點(diǎn) E和點(diǎn) C的坐標(biāo)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(8分)如圖,在△ABC中,∠C=60°,∠A=40°.
(1)用尺規(guī)作圖作AB的垂直平分線,交AC于點(diǎn)D,交AB于點(diǎn)E(保留作圖痕跡,不要求寫作法和證明);
(2)求證:BD平分∠CBA.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線l的解析式為y=x﹣1,拋物線y=ax2+bx+2經(jīng)過點(diǎn)A(m,0),B(2,0),D(1,)三點(diǎn).
(1)求拋物線的解析式及A點(diǎn)的坐標(biāo),并在圖示坐標(biāo)系中畫出拋物線的大致圖象;
(2)已知點(diǎn) P(x,y)為拋物線在第二象限部分上的一個(gè)動(dòng)點(diǎn),過點(diǎn)P作PE垂直x軸于點(diǎn)E,延長PE與直線l交于點(diǎn)F,請(qǐng)你將四邊形PAFB的面積S表示為點(diǎn)P的橫坐標(biāo)x的函數(shù),并求出S的最大值及S最大時(shí)點(diǎn)P的坐標(biāo);
(3)將(2)中S最大時(shí)的點(diǎn)P與點(diǎn)B相連,求證:直線l上的任意一點(diǎn)關(guān)于x軸的對(duì)稱點(diǎn)一定在PB所在直線上.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖(1),已知:在△ABC中,∠BAC=90°,AB=AC,直線m經(jīng)過點(diǎn)A,BD⊥直線m, CE⊥直線m,垂足分別為點(diǎn)D、E.證明:DE=BD+CE.
(2) 如圖(2),將(1)中的條件改為:在△ABC中,AB=AC,D、A、E三點(diǎn)都在直線m上,并且有∠BDA=∠AEC=∠BAC=,其中為任意銳角或鈍角.請(qǐng)問結(jié)論DE=BD+CE是否成立?如成立,請(qǐng)你給出證明;若不成立,請(qǐng)說明理由.
(3)拓展與應(yīng)用:如圖(3),D、E是D、A、E三點(diǎn)所在直線m上的兩動(dòng)點(diǎn)(D、A、E三點(diǎn)互不重合),點(diǎn)F為∠BAC平分線上的一點(diǎn),且△ABF和△ACF均為等邊三角形,連接BD、CE,若∠BDA=∠AEC=∠BAC,試判斷△DEF的形狀.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】直線y=﹣x+3交x軸于點(diǎn)A,交y軸于點(diǎn)B,頂點(diǎn)為D的拋物線y=﹣x2+2mx﹣3m經(jīng)過點(diǎn)A,交x軸于另一點(diǎn)C,連接BD,AD,CD,如圖所示.
(1)直接寫出拋物線的解析式和點(diǎn)A,C,D的坐標(biāo);
(2)動(dòng)點(diǎn)P在BD上以每秒2個(gè)單位長的速度由點(diǎn)B向點(diǎn)D運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)Q在CA上以每秒3個(gè)單位長的速度由點(diǎn)C向點(diǎn)A運(yùn)動(dòng),當(dāng)其中一個(gè)點(diǎn)到達(dá)終點(diǎn)停止運(yùn)動(dòng)時(shí),另一個(gè)點(diǎn)也隨之停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒.PQ交線段AD于點(diǎn)E.
①當(dāng)∠DPE=∠CAD時(shí),求t的值;
②過點(diǎn)E作EM⊥BD,垂足為點(diǎn)M,過點(diǎn)P作PN⊥BD交線段AB或AD于點(diǎn)N,當(dāng)PN=EM時(shí),求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC,AD是△ABC的角平分線,點(diǎn)O為AB的中點(diǎn),連接DO并延長到點(diǎn)E,使OE=OD,連接AE,BE.
(1)求證:四邊形AEBD是矩形;
(2)當(dāng)△ABC滿足什么條件時(shí),矩形AEBD是正方形,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一名在校大學(xué)生利用“互聯(lián)網(wǎng)+”自主創(chuàng)業(yè),銷售一種產(chǎn)品,這種產(chǎn)品成本價(jià)10元/件,已知銷售價(jià)不低于成本價(jià),且物價(jià)部門規(guī)定這種產(chǎn)品的銷售價(jià)不高于16元/件,市場調(diào)查發(fā)現(xiàn),該產(chǎn)品每天的銷售量y(件)與銷售價(jià)x(元/件)之間的函數(shù)關(guān)系如圖所示.
(1)求y與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(2)求每天的銷售利潤W(元)與銷售價(jià)x(元/件)之間的函數(shù)關(guān)系式,并求出每件銷售價(jià)為多少元時(shí),每天的銷售利潤最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB的垂直平分線分別交AB,BC于D,E,AC的垂直平分線分別交AC,BC于F,G.
(1)若△AEG的周長為10,求線段BC的長.
(2)若∠BAC=128°,求∠EAG的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com