【題目】直線y=﹣x+3交x軸于點(diǎn)A,交y軸于點(diǎn)B,頂點(diǎn)為D的拋物線y=﹣x2+2mx﹣3m經(jīng)過點(diǎn)A,交x軸于另一點(diǎn)C,連接BD,AD,CD,如圖所示.
(1)直接寫出拋物線的解析式和點(diǎn)A,C,D的坐標(biāo);
(2)動(dòng)點(diǎn)P在BD上以每秒2個(gè)單位長的速度由點(diǎn)B向點(diǎn)D運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)Q在CA上以每秒3個(gè)單位長的速度由點(diǎn)C向點(diǎn)A運(yùn)動(dòng),當(dāng)其中一個(gè)點(diǎn)到達(dá)終點(diǎn)停止運(yùn)動(dòng)時(shí),另一個(gè)點(diǎn)也隨之停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒.PQ交線段AD于點(diǎn)E.
①當(dāng)∠DPE=∠CAD時(shí),求t的值;
②過點(diǎn)E作EM⊥BD,垂足為點(diǎn)M,過點(diǎn)P作PN⊥BD交線段AB或AD于點(diǎn)N,當(dāng)PN=EM時(shí),求t的值.
【答案】(1)點(diǎn)A(2,0),點(diǎn)C(6,0),點(diǎn)D(4,3),(2)①秒;(2)t=(1﹣)秒或t=秒.
【解析】(1)先由直線解析式求得點(diǎn)A、B坐標(biāo),將點(diǎn)A坐標(biāo)代入拋物線解析式求得m的值,從而得出答案;
(2)①由(1)知BD=AC、BD//OC,根據(jù)AB=AD=證四邊形ABPQ是平行四邊形得AQ=BP,即2t=4-3t,解之即可;
②分點(diǎn)N在AB上和點(diǎn)N在AD上兩種情況分別求解.
(1)在中,令得,令得,
∴點(diǎn)、點(diǎn),
將點(diǎn)代入拋物線解析式,得:,
解得:,
所以拋物線解析式為,
∵y,
∴點(diǎn),對(duì)稱軸為,
∴點(diǎn)C坐標(biāo)為;
(2)如圖1,
由(1)知,
根據(jù),得:,
①∵、,
∴,
∴,
∵,
∴,
∵、,
∴,
∴,
∴,
∴,
∴四邊形ABPQ是平行四邊形,
∴,即,
解得:,
即當(dāng)時(shí),秒;
②Ⅰ當(dāng)點(diǎn)N在AB上時(shí),,即,
連接NE,延長PN交x軸于點(diǎn)F,延長ME交x軸于點(diǎn)H,
∵、,,,
∴,,、,,
∴,
∵點(diǎn)N在直線上,
∴點(diǎn)N的坐標(biāo)為,
∴,
∵,
∴∽,
∴,
∴,
∵、,
∴直線AD解析式為,
∵點(diǎn)E在直線上,
∴點(diǎn)E的坐標(biāo)為,
∵,
∴,
解得:舍或;
Ⅱ當(dāng)點(diǎn)N在AD上時(shí),,即,
∵,
∴點(diǎn)E、N重合,此時(shí),
∴,
∴,
解得:,
綜上所述,當(dāng)時(shí),秒或秒
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】過矩形ABCD的對(duì)角線AC的中點(diǎn)O作EF⊥AC,交BC邊于點(diǎn)E,交AD邊于點(diǎn)F,分別連接AE,CF.
(1)求證:四邊形AECF是菱形;
(2)若AB=6,AC=10,EC=,求EF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解某社區(qū)居民的用電情況,隨機(jī)對(duì)該社區(qū)10戶居民進(jìn)行調(diào)查,下表是這10戶居民2018年4月份用電量的調(diào)查結(jié)果:
居民(戶) | 1 | 2 | 3 | 4 |
月用電量(度) | 30 | 42 | 50 | 51 |
那么關(guān)于這10戶居民月用電量(單位:度),下列說法錯(cuò)誤的是( )
A. 中位數(shù)是50度 B. 眾數(shù)是51度
C. 方差是42度2 D. 平均數(shù)是46.8度
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知A(-4,n),B(2,-4)是一次函數(shù)y=kx+b和反比例函數(shù)y=的圖象的兩個(gè)交點(diǎn).
(1)求一次函數(shù)和反比例函數(shù)的解析式;
(2)求△AOB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在同一直角坐標(biāo)系中,二次函數(shù)y=x2-2x-3的圖象與兩坐標(biāo)軸分別交于點(diǎn)A點(diǎn) B和點(diǎn)C,一次函數(shù)的圖象與拋物線交于B、C兩點(diǎn).
(1)將這個(gè)二次函數(shù)化為的形式為 。
(2)當(dāng)自變量滿足 時(shí),兩函數(shù)的函數(shù)值都隨增大而增大。
(3)當(dāng)自變量滿足 時(shí),一次函數(shù)值大于二次函數(shù)值。
(4)當(dāng)自變量滿足 時(shí),兩個(gè)函數(shù)的函數(shù)值的積小于0。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在以點(diǎn)O為原點(diǎn)的直角坐標(biāo)系中,一次函數(shù)y=-x+1的圖象與x軸交于A,與y軸交于點(diǎn)B,點(diǎn)C在第二象限內(nèi)且為直線AB上一點(diǎn),OC=AB,反比例函數(shù)y=的圖象經(jīng)過點(diǎn)C,則k的值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列各組條件中,不能判斷△ABC≌△DEF的是( )
A. ∠A=∠D,AB=DE,∠B=∠E B. AB=DE,∠A=∠D,BC=EF
C. AB=DE,BC=EF,AC=DF D. ∠B=∠E=90°,AB=DE,AC=DF
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用配方法解下列方程時(shí),配方正確的是( )
A. 方程x2-6x-5=0,可化為(x-3)2=4
B. 方程y2-2y-2 015=0,可化為(y-1)2=2 015
C. 方程a2+8a+9=0,可化為(a+4)2=25
D. 方程2x2-6x-7=0,可化為
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com