【題目】一名在校大學(xué)生利用“互聯(lián)網(wǎng)+”自主創(chuàng)業(yè),銷售一種產(chǎn)品,這種產(chǎn)品成本價10元/件,已知銷售價不低于成本價,且物價部門規(guī)定這種產(chǎn)品的銷售價不高于16元/件,市場調(diào)查發(fā)現(xiàn),該產(chǎn)品每天的銷售量y(件)與銷售價x(元/件)之間的函數(shù)關(guān)系如圖所示.
(1)求y與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(2)求每天的銷售利潤W(元)與銷售價x(元/件)之間的函數(shù)關(guān)系式,并求出每件銷售價為多少元時,每天的銷售利潤最大?最大利潤是多少?
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖7,已知平行四邊形ABCD的周長是32cm,AB︰BC=5︰3,AE⊥BC,垂足為E,AF⊥CD,垂足為F,∠EAF=2∠C.
(1)求∠C的度數(shù);
(2)已知DF的長是關(guān)于的方程--6=0的一個根,求該方程的另一個根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在同一直角坐標(biāo)系中,二次函數(shù)y=x2-2x-3的圖象與兩坐標(biāo)軸分別交于點(diǎn)A點(diǎn) B和點(diǎn)C,一次函數(shù)的圖象與拋物線交于B、C兩點(diǎn).
(1)將這個二次函數(shù)化為的形式為 。
(2)當(dāng)自變量滿足 時,兩函數(shù)的函數(shù)值都隨增大而增大。
(3)當(dāng)自變量滿足 時,一次函數(shù)值大于二次函數(shù)值。
(4)當(dāng)自變量滿足 時,兩個函數(shù)的函數(shù)值的積小于0。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列各組條件中,不能判斷△ABC≌△DEF的是( )
A. ∠A=∠D,AB=DE,∠B=∠E B. AB=DE,∠A=∠D,BC=EF
C. AB=DE,BC=EF,AC=DF D. ∠B=∠E=90°,AB=DE,AC=DF
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:Rt△ABC中,∠C=90°,AC=3,BC=4,點(diǎn)E在AC上(E與A、C均不重合).
(1)若點(diǎn)F在AB上,且EF平分Rt△ABC的周長,設(shè)AE=x,用含x的代數(shù)式表示
△AEF的面積S△AEF;
(2)若點(diǎn)F在折線ABC上移動,試問是否存在直線EF將Rt△ABC的周長與面積同時平分?若存在直線EF,則求出AE的長;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知A(,0),B(0, )分別為兩坐標(biāo)軸上的點(diǎn),且、滿足,OC∶OA=1∶3.
(1)求A、B、C三點(diǎn)的坐標(biāo);
(2)若D(1,0),過點(diǎn)D的直線分別交AB、BC于E、F兩點(diǎn),設(shè)E、F兩點(diǎn)的橫坐標(biāo)分別為.當(dāng)BD平分△BEF的面積時,求的值;
(3)如圖2,若M(2,4),點(diǎn)P是軸上A點(diǎn)右側(cè)一動點(diǎn),AH⊥PM于點(diǎn)H,在HM上取點(diǎn)G,使HG=HA,連接CG,當(dāng)點(diǎn)P在點(diǎn)A右側(cè)運(yùn)動時,∠CGM的度數(shù)是否改變?若不變,請求其值;若改變,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2016甘肅省白銀市)如圖,在平面直角坐標(biāo)系中,△ABC的頂點(diǎn)A(0,1),B(3,2),C(1,4)均在正方形網(wǎng)格的格點(diǎn)上.
(1)畫出△ABC關(guān)于x軸的對稱圖形△A1B1C1;
(2)將△A1B1C1沿x軸方向向左平移3個單位后得到△A2B2C2,寫出頂點(diǎn)A2,B2,C2的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com