【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)y=ax2+4x﹣3圖象的頂點是A,與x軸交于B,C兩點,與y軸交于點D.點B的坐標(biāo)是(1,0).
(1)求A,C兩點的坐標(biāo),并根據(jù)圖象直接寫出當(dāng)y>0時x的取值范圍.
(2)平移該二次函數(shù)的圖象,使點D恰好落在點A的位置上,求平移后圖象所對應(yīng)的二次函數(shù)的表達式.
【答案】(1)A(2,1),C(3,0),當(dāng)y>0時,1<x<3;(2)y=﹣(x﹣4)2+5
【解析】
(1)把點B坐標(biāo)代入拋物線的解析式即可求出a的值,把拋物線的一般式化為頂點式即可求出點A的坐標(biāo),根據(jù)二次函數(shù)的對稱性即可求出點C的坐標(biāo),二次函數(shù)的圖象在x軸上方的部分對應(yīng)的x的范圍即為當(dāng)y>0時x的取值范圍;
(2)先由點D和點A的坐標(biāo)求出拋物線的平移方式,再根據(jù)拋物線的平移規(guī)律:上加下減,左加右減解答即可.
解:(1)把B(1,0)代入y=ax2+4x﹣3,得0=a+4﹣3,解得:a=﹣1,
∴y=﹣x2+4x﹣3=﹣(x﹣2)2+1,
∴A(2,1),
∵拋物線的對稱軸是直線x=2,B、C兩點關(guān)于直線x=2對稱,
∴C(3,0),
∴當(dāng)y>0時,1<x<3;
(2)∵D(0,﹣3),A(2,1),
∴點D平移到點A,拋物線應(yīng)向右平移2個單位,再向上平移4個單位,
∴平移后拋物線的解析式為y=﹣(x﹣4)2+5.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,與的AC邊相切于點C,與AB、BC邊分別交于點D、E,,CE是的直徑.
(1)求證:AB是的切線;
(2)若求AC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O的半徑為6cm,B為⊙O外一點,OB交⊙O于點A,AB=OA,動點P從點A出發(fā),以π cm/s的速度在⊙O上按逆時針方向運動一周回到點A立即停止.當(dāng)點P運動的時間為______時,BP與⊙O相切.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點B在線段AC上,點D,E在AC同側(cè),∠A=∠C=90°,BD⊥BE,AD=BC.
(1)求證:AC=AD+CE;
(2)若AD=3,CE=5,點P為線段AB上的動點,連接DP,作PQ⊥DP,交直線BE于點Q;
(i)當(dāng)點P與A,B兩點不重合時,求的值;
(ii)當(dāng)點P從A點運動到AC的中點時,求線段DQ的中點所經(jīng)過的路徑(線段)長.(直接寫出結(jié)果,不必寫出解答過程)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c(a>0)的圖象與x軸交于A,B兩點,與y軸正半軸交于點C,它的對稱軸為直線x=﹣1.則下列選項中正確的是( 。
A.abc<0B.4ac﹣b2>0
C.c﹣a>0D.當(dāng)x=﹣n2﹣2(n為實數(shù))時,y≥c
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在x軸的上方,直角∠BOA繞原點O按順時針方向旋轉(zhuǎn).若∠BOA的兩邊分別與函數(shù)、的圖象交于B、A兩點,則∠OAB大小的變化趨勢為( )
A.逐漸變小B.逐漸變大C.時大時小D.保持不變
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)和的圖象相交于點,反比例函數(shù)的圖象經(jīng)過點.
(1)求反比例函數(shù)的表達式;
(2)設(shè)一次函數(shù) 的圖象與反比例函數(shù) 的圖象的另一個交點為,連接,求的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某小區(qū)游泳館夏季推出兩種收費方式.方式一:先購買會員證,會員證200元,只限本人當(dāng)年使用,憑證游泳每次需另付費10元:方式二:不購買會員證,每次游泳需付費20元.
(1)若甲計劃今年夏季游泳的費用為500元,則選擇哪種付費方式游泳次數(shù)比較多?
(2)若乙計劃今年夏季游泳的次數(shù)超過15次,則選擇哪種付費方式游泳花費比較少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】新學(xué)期復(fù)學(xué)后,學(xué)校為了保障學(xué)生的出行安全,隨機調(diào)查了部分學(xué)生的上學(xué)方式(每位學(xué)生從乘私家車、坐公交、騎車和步行4種方式中限選1項),根據(jù)調(diào)查數(shù)據(jù)制作了如圖所示的不完整的統(tǒng)計表和扇形統(tǒng)計圖.
(1)本次學(xué)校共調(diào)查了 名學(xué)生, , ;
(2)求扇形統(tǒng)計圖中“步行”對應(yīng)扇形的圓心角;
(3)甲、乙兩位同學(xué)住在同一小區(qū),且都坐公交車上學(xué),有、、三路公交車途徑該小區(qū)和學(xué)校,假設(shè)甲、乙兩位同學(xué)坐這三路公交車是等可能的,請用列表或畫樹狀圖的方法求某日甲、乙兩位同學(xué)坐同一路公交車到學(xué)校的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com