【題目】如圖,拋物線y=ax2+bx﹣4(a≠0)與x軸交于A(4,0)、B(﹣1,0)兩點,過點A的直線y=﹣x+4交拋物線于點C.
(1)求此拋物線的解析式;
(2)在直線AC上有一動點E,當點E在某個位置時,使△BDE的周長最小,求此時E點坐標;
(3)當動點E在直線AC與拋物線圍成的封閉線A→C→B→D→A上運動時,是否存在使△BDE為直角三角形的情況,若存在,請直接寫出符合要求的E點的坐標;若不存在,請說明理由.
【答案】
(1)
解:∵拋物線y=ax2+bx﹣4(a≠0)與x軸交于A(4,0)、B(﹣1,0)兩點,
∴ ,
∴ ,
∴拋物線解析式為y=x2﹣3x﹣4
(2)
解:如圖1,
作點B關于直線AC的對稱點F,連接DF交AC于點E,
由(1)得,拋物線解析式為y=x2﹣3x﹣4①,
∴D(0,﹣4),
∵點C是直線y=﹣x+4②與拋物線的交點,
∴聯(lián)立①②解得, (舍)或 ,
∴C(﹣2,6),
∵A(4,0),
∴直線AC解析式為y=﹣x+4,
∵直線BF⊥AC,且B(﹣1,0),
∴直線BF解析式為y=x+1,
設點F(m,m+1),
∴G( , ),
∵點G在直線AC上,
∴﹣ ,
∴m=4,
∴F(4,5),
∵D(0,﹣4),
∴直線DF解析式為y= x﹣4,
∵直線AC解析式為y=﹣x+4,
∴直線DF和直線AC的交點E( , )
(3)
解:∵BD= ,
由(2)有,點B到線段AC的距離為BG= BF= ×5 = >BD,
∴∠BED不可能是直角,
∵B(﹣1,0),D(0,﹣4),
∴直線BD解析式為y=﹣4x+4,
∵△BDE為直角三角形,
∴①∠BDE=90°,
∴BE⊥BD交AC于B,
∴直線BE解析式為y= x+ ,
∵點E在直線AC:y=﹣x+4的圖象上,
∴E(3,1),
②∠BDE=90°,
∴BE⊥BD交AC于D,
∴直線BE的解析式為y= x﹣4,
∵點E在拋物線y=x2﹣3x﹣4上,
∴直線BE與拋物線的交點為(0,﹣4)和( ,﹣ ),
∴E( ,﹣ ),
即:滿足條件的點E的坐標為E(3,1)或( ,﹣ )
【解析】(1)利用待定系數法求出拋物線解析式;(2)先判斷出周長最小時BE⊥AC,即作點B關于直線AC的對稱點F,連接DF,交AC于點E,聯(lián)立方程組即可;(3)三角形BDE是直角三角形時,由于BD>BG,因此只有∠DBE=90°或∠BDE=90°,兩種情況,利用直線垂直求出點E坐標.此題是二次函數綜合題,主要考查了待定系數法,極值,對稱性,直角三角形的性質,解本題的關鍵是求函數圖象的交點坐標.
科目:初中數學 來源: 題型:
【題目】甲、乙兩同學的家與學校的距離均為3000米.甲同學先步行600米,然后乘公交車去學校,乙同學騎自行車去學校.已知甲步行速度是乙騎自行車速度的,公交車的速度是乙騎自行車速度的2倍.甲乙兩同學同時從家出發(fā)去學校,結果甲同學比乙同學早到2分鐘.乙騎自行車的速度是( 。┟/分.
A. 600 B. 400 C. 300 D. 150
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,D 是 AB 邊上的中點,將△ABC 沿過點 D 的直線折疊,DE 為折痕,使點 A 落在 BC 上 F處,若∠B=40°,則∠EDF=_____度.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知拋物線與x軸交于A(6,0)、B(﹣ ,0)兩點,與y軸交于點C,過拋物線上點M(1,3)作MN⊥x軸于點N,連接OM.
(1)求此拋物線的解析式;
(2)如圖1,將△OMN沿x軸向右平移t個單位(0≤t≤5)到△O′M′N′的位置,MN′、M′O′與直線AC分別交于點E、F.
①當點F為M′O′的中點時,求t的值;
②如圖2,若直線M′N′與拋物線相交于點G,過點G作GH∥M′O′交AC于點H,試確定線段EH是否存在最大值?若存在,求出它的最大值及此時t的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,AB=10cm,BC=6cm,若點P從點A出發(fā),以每秒4cm的速度沿折線A-C-B-A運動,設運動時間為t秒(t>0).
(1)若點P在AC上,且滿足PA=PB時,求出此時t的值;
(2)若點P恰好在∠BAC的角平分線上,求t的值;
(3)在運動過程中,直接寫出當t為何值時,△BCP為等腰三角形.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,Rt△ABC中,∠C=90°,點P為AC邊上的一點,延長BP至點D,使得AD=AP,當AD⊥AB時,過D作DE⊥AC于E,AB-BC=4,AC=8,則△ABP面積為____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在梯形ABCD中,AD∥BC,E為CD中點,連接AE并延長AE交BC的延長線于點F.
(1)求證:CF =AD;
(2)若AD=2,AB=8,當BC為多少時,點B在線段AF的垂直平分線上?說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】以x為自變量的二次函數y=x2﹣2(b﹣2)x+b2﹣1的圖象不經過第三象限,則實數b的取值范圍是( 。
A.b≥
B.b≥1或b≤﹣1
C.b≥2
D.1≤b≤2
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了了解某學校初四年紀學生每周平均課外閱讀時間的情況,隨機抽查了該學校初四年級m名同學,對其每周平均課外閱讀時間進行統(tǒng)計,繪制了如下條形統(tǒng)計圖(圖一)和扇形統(tǒng)計圖(圖二):
(1)根據以上信息回答下列問題:
①求m值.
②求扇形統(tǒng)計圖中閱讀時間為5小時的扇形圓心角的度數.
③補全條形統(tǒng)計圖.
(2)直接寫出這組數據的眾數、中位數,求出這組數據的平均數.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com